Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 18(9): e1010362, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36054194

RESUMEN

The role of EGFR in lung cancer is well described with numerous activating mutations that result in phosphorylation and tyrosine kinase inhibitors that target EGFR. While the role of the EGFR kinase in non-small cell lung cancer (NSCLC) is appreciated, control of EGFR signaling pathways through dephosphorylation by phosphatases is not as clear. Through whole genome sequencing we have uncovered conserved V483M Ptprh mutations in PyMT induced tumors. Profiling the downstream events of Ptprh mutant tumors revealed AKT activation, suggesting a key target of PTPRH was EGFR tyrosine 1197. Given the role of EGFR in lung cancer, we explored TCGA data which revealed that a subset of PTPRH mutant tumors shared gene expression profiles with EGFR mutant tumors, but that EGFR mutations and PTPRH mutations were mutually exclusive. Generation of a PTPRH knockout NSCLC cell line resulted in Y1197 phosphorylation of EGFR, and a rescue with expression of wild type PTPRH returned EGFR phosphorylation to parental line values while rescue with catalytically dead PTPRH did not. A dose response curve illustrated that two human NSCLC lines with naturally occurring PTPRH mutations responded to EGFR tyrosine kinase inhibition. Osimertinib treatment of these tumors resulted in a reduction of tumor volume relative to vehicle controls. PTPRH mutation resulted in nuclear pEGFR as seen in immunohistochemistry, suggesting that there may also be a role for EGFR as a transcriptional co-factor. Together these data suggest mutations in PTPRH in NSCLC is inhibitory to PTPRH function, resulting in aberrant EGFR activity and ultimately may result in clinically actionable alterations using existing therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Tirosina/genética
2.
PLoS Genet ; 14(1): e1007135, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346386

RESUMEN

Human breast cancer has been characterized by extensive transcriptional heterogeneity, with dominant patterns reflected in the intrinsic subtypes. Mouse models of breast cancer also have heterogeneous transcriptomes and we noted that specific histological subtypes were associated with particular subsets. We hypothesized that unique sets of genes define each tumor histological type across mouse models of breast cancer. Using mouse models that contained both gene expression data and expert pathologist classification of tumor histology on a sample by sample basis, we predicted and validated gene expression signatures for Papillary, EMT, Microacinar and other histological subtypes. These signatures predict known histological events across murine breast cancer models and identify counterparts of mouse mammary tumor types in subtypes of human breast cancer. Importantly, the EMT, Adenomyoepithelial, and Solid signatures were predictive of clinical events in human breast cancer. In addition, a pan-cancer comparison revealed that the histological signatures were active in a variety of human cancers such as lung, oral, and esophageal squamous tumors. Finally, the differentiation status and transcriptional activity implicit within these signatures was identified. These data reveal that within tumor histology groups are unique gene expression profiles of differentiation and pathway activity that stretch well beyond the transgenic initiating events and that have clear applicability to human cancers. As a result, our work provides a predictive resource and insights into possible mechanisms that govern tumor heterogeneity.


Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Animales/genética , Transcriptoma , Animales , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Transducción de Señal/genética
3.
J Mammary Gland Biol Neoplasia ; 24(3): 231-243, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227983

RESUMEN

Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.


Asunto(s)
Animales Modificados Genéticamente , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Genómica/métodos , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones
4.
Cell Chem Biol ; 30(11): 1354-1365.e6, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643616

RESUMEN

RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Transducción de Señal , Humanos , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Sistema de Señalización de MAP Quinasas
5.
SLAS Discov ; 27(4): 249-257, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35288294

RESUMEN

KRAS is one of the most heavily mutated oncogenes in cancer and targeting mutant KRAS with drugs has proven difficult. However, recent FDA approval of the KRAS G12C selective inhibitor sotorasib (AMG-510), has breathed new life into the drive to develop mutant KRAS inhibitors. In an effort to study RAS inhibitors in cells and identify new compounds that inhibit Ras signaling, western blotting and ELISA assays are commonly used. These traditional immunoassays are tedious, require multiple washing steps, and are not easily adaptable to a high throughput screening (HTS) format. To overcome these limitations, we applied Lumit immunoassay technology to analyze RAS signaling pathway activation and inhibition through the detection of phosphorylated ERK. The assay we developed was used to rank order potencies of allele specific inhibitors within cell lines harboring various activating KRAS mutations. An inhibition profile was obtained indicating various potencies and selectivity of the inhibitors, including MRTX-1133, which was shown to be highly potent against KRAS G12D signaling. MRTX-1133 had approximately 40 and 400 times less inhibitory potency against G12C and G12V mutant KRAS, respectively, while no inhibition of WT KRAS was observed. The potency of PROTAC compound LC-2 targeting selective degradation of KRAS G12C was also tested using the Lumit pERK immunoassay, and a maximal decrease in RAS signaling was achieved. Lumit immunoassays provide a rapid, homogeneous platform for detecting signaling pathway activation and inhibition. Our results demonstrate that this bioluminescent technology can streamline the analysis of signaling pathways of interest, such as RAS-dependent pathways, and be used to identify much needed inhibitors. The results further imply that similar assay designs could be applied to other signaling pathway nodes.


Asunto(s)
Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular , Inhibidores de Puntos de Control Inmunológico , Inmunoensayo , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Antineoplásicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/enzimología , Neoplasias/genética , Oncogenes , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
6.
Sci Rep ; 11(1): 9502, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947907

RESUMEN

The E2F family of transcription factors is important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis and metastasis. Alteration of the Rb/E2F pathway occurs in various forms of cancer, including breast cancer. E2F1 ablation has been shown to decrease metastasis in MMTV-Neu and MMTV-PyMT transgenic mouse models of breast cancer. Here we take a bioinformatic approach to determine the E2F1 regulated genomic alterations involved in the metastatic cascade, in both Neu and PyMT models. Through gene expression analysis, we reveal few transcriptome changes in non-metastatic E2F1-/- tumors relative to transgenic tumor controls. However investigation of these models through whole genome sequencing found numerous differences between the models, including differences in the proposed tumor etiology between E2F1-/- and E2F1+/+ tumors induced by Neu or PyMT. For example, loss of E2F1 within the Neu model led to an increased contribution of the inefficient double stranded break repair signature to the proposed etiology of the tumors. While the SNV mutation burden was higher in PyMT mouse tumors than Neu mouse tumors, there was no statistically significant differences between E2F WT and E2F1 KO mice. Investigating mutated genes through gene set analysis also found a significant number of genes mutated in the cell adhesion pathway in E2F1-/- tumors, indicating this may be a route for disruption of metastasis in E2F1-/- tumors. Overall, these findings illustrate the complicated nature of uncovering drivers of the metastatic process.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Procesos Neoplásicos
7.
Sci Rep ; 9(1): 10718, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341204

RESUMEN

In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.


Asunto(s)
Movimiento Celular , Factor de Transcripción E2F1/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Neoplasias Mamarias Experimentales/metabolismo , Animales , Línea Celular Tumoral , Factor de Transcripción E2F1/genética , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia
8.
Cell Rep ; 29(2): 249-257.e8, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597089

RESUMEN

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Terapia Molecular Dirigida , Receptor ErbB-2/metabolismo , Adulto , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Interferón Tipo I/metabolismo , Metilación , Ratones , Modelos Biológicos , Complejo Represivo Polycomb 2/metabolismo , Retroelementos/genética , Trastuzumab/uso terapéutico , Regulación hacia Arriba
9.
Nat Commun ; 10(1): 3261, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332182

RESUMEN

Mouse models have an essential role in cancer research, yet little is known about how various models resemble human cancer at a genomic level. Here, we complete whole genome sequencing and transcriptome profiling of two widely used mouse models of breast cancer, MMTV-Neu and MMTV-PyMT. Through integrative in vitro and in vivo studies, we identify copy number alterations in key extracellular matrix proteins including collagen 1 type 1 alpha 1 (COL1A1) and chondroadherin (CHAD) that drive metastasis in these mouse models. In addition to copy number alterations, we observe a propensity of the tumors to modulate tyrosine kinase-mediated signaling through mutation of phosphatases such as PTPRH in the MMTV-PyMT mouse model. Mutation in PTPRH leads to increased phospho-EGFR levels and decreased latency. These findings underscore the importance of understanding the complete genomic landscape of a mouse model and illustrate the utility this has in understanding human cancers.


Asunto(s)
Neoplasias de la Mama/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Animales/genética , Animales , Línea Celular Tumoral , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Proteínas de la Matriz Extracelular/genética , Femenino , Humanos , Neoplasias Mamarias Experimentales/genética , Ratones , Mutación
10.
Nat Commun ; 10(1): 2901, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263101

RESUMEN

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 2/genética , Receptor ErbB-2/metabolismo , Familia-src Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Animales , Neoplasias de la Mama/patología , Proteína Tirosina Quinasa CSK , Carcinogénesis , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Biosíntesis de Proteínas , Receptor ErbB-2/genética , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA