Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Histopathology ; 78(5): 727-737, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33067892

RESUMEN

AIMS: Haemophagocytosis in the bone marrow of patients who have succumbed to coronavirus disease 19 (COVID-19) has not been widely studied. The aims of the present study were to perform morphological analyses and morphometry of haemophagocytosis in the bone marrow of patients with severe COVID-19, and to correlate the findings with the clinical course of the disease. METHODS AND RESULTS: In this single-centre study performed at the University Hospital Jena, bone marrow specimens of 15 deceased patients who had experienced a severe course of COVID-19 were sampled from the vertebral column during autopsy. Slides of the bone marrow were stained with routine stains or immunohistochemically, and further examined for haemophagocytosis by the use of light microscopy. To substantiate the morphological findings, additional slides were stained for CD163 and morphometry was performed. In all bone marrow samples, an increase in cellularity was found. Haemophagocytes with erythrophagocytosis were detected in 67% of the deceased patients. In tissues with low numbers of haemophagocytes or ill-defined haemophagocytes, an increase in iron deposits was frequently seen. Morphological findings were then correlated with several important clinical data, and the HScore (probability of having a reactive hemophagocytic syndrome) was calculated to posthumously confirm the diagnosis of secondary haemophagocytic lymphohistiocytosis. The median duration of disease and the hospitalisation time were lower in patients with haemophagocytosis (n = 10) than in patients without haemophagocytosis (n = 5). In addition, patients with haemophagocytes showed increased inflammatory parameters 2-5 days prior to death, in contrast to patients without haemophagocytes. CONCLUSIONS: Haemophagocytosis is a common finding in the bone marrow of deceased individuals with severe COVID-19, and may indicate fatal severe acute respiratory syndrome coronavirus 2 infections.


Asunto(s)
COVID-19/virología , Linfohistiocitosis Hemofagocítica/virología , SARS-CoV-2/fisiología , Anciano , Anciano de 80 o más Años , Autopsia , Médula Ósea/patología , Médula Ósea/virología , COVID-19/complicaciones , COVID-19/patología , Femenino , Hospitalización , Humanos , Inmunohistoquímica , Linfohistiocitosis Hemofagocítica/complicaciones , Linfohistiocitosis Hemofagocítica/patología , Masculino , Persona de Mediana Edad
2.
World J Clin Oncol ; 13(3): 168-185, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35433295

RESUMEN

Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/ß-catenin signaling pathway. It is a highly conserved pathway, with ß-catenin, a transcription factor, as target protein. Translocation of ß-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/ß-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.

3.
Heliyon ; 6(1): e03187, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32042960

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Acquired inherited and/or somatic mutations drive its development. In order to prevent the formation of these mutations, precise and immediate repair of any DNA damage is indispensable. Non-homologous end-joining (NHEJ) is the key mechanism of DNA double-strand break repair. Here, we report that miR-502 targets two components in pancreatic cell lines, Ku70 and XLF of the C-NHEJ. Interestingly, we also observed an attenuated cell cycle response to gamma ionizing radiation (γ-IR) via diminished phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 in these cell lines. Altogether, pancreatic cells showed increased susceptibility to γ-IR via direct inhibition of DNA double-strand break repair and attenuation of the cell cycle response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA