Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Altern Ther Health Med ; 30(5): 6-13, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581340

RESUMEN

Objectives: Continuous and excessive secretion of pro-inflammatory and anti-inflammatory chemicals and cytokines may further deteriorate inflammation. Anti-inflammatory drugs play an imperative role in inhibiting the evolution of inflammatory diseases. As per the Unani doctrine, a holistic treatment approach is used to treat illnesses. Therefore, drugs having different actions are used to achieve the synergic effect. Three drugs (Cinnamomum zeylanicum, Alpinia galanga, and Withania somnifera), which are frequently used in Unani medicine for joint disorders were selected to evaluate the anti-inflammatory activity of the extract derived from them. Methods: We used RAW 264.7 macrophage cells to see the expression of inflammatory markers IL-1ß, IL-6, and TNF-α. Cytotoxic activity was assessed with MTT assay and Nitric Oxide (NO) was evaluated using Griess reagent. Further, anti-inflammatory activity was evaluated in Wistar Albino rats using carrageenan-induced paw oedema and immunohistochemistry assays for Cyclooxygenase-2 (COX-2). All the data were analyzed using ANOVA and Dunnett t test for multiple comparisons. Results: This extract did not show any cytotoxic effect and the gene expression was significantly reduced for IL-1ß, IL-6, and TNF-α in a dose-dependent manner. Further, NO production was also significantly reduced in the test groups. Immunohistochemistry revealed that the test groups had less inflammation as compared to the control group. Conclusion: It may be inferred that the ethanolic extract of the three herbs has strong anti-inflammatory activity in the tested inflammatory models and the extract is safe as it did not show any cytotoxic effects in both in vitro and in vivo conditions.


Asunto(s)
Alpinia , Antiinflamatorios , Cinnamomum zeylanicum , Extractos Vegetales , Ratas Wistar , Withania , Animales , Withania/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Ratas , Alpinia/química , Ratones , Cinnamomum zeylanicum/química , Células RAW 264.7 , Masculino , Edema/tratamiento farmacológico , Carragenina
2.
Semin Cancer Biol ; 86(Pt 3): 899-913, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34998944

RESUMEN

The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/uso terapéutico , Anhidrasas Carbónicas/genética , Neoplasias/patología , Antígenos de Neoplasias/metabolismo , Concentración de Iones de Hidrógeno , Quimiocinas/uso terapéutico
3.
Semin Cancer Biol ; 86(Pt 2): 720-736, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35257861

RESUMEN

Chemokines are small secreted proteins that regulate the immune system by signaling through chemokine receptors to induce immune cell migration, motility, and infiltration into the tissue. Altered chemokine/receptor expression is associated with numerous inflammatory diseases, and more recently in non-immune cell diseases like cancer. Emerging new studies demonstrate that chemokines can directly modulate the tumor microenvironment (TME) to assist tumorigenesis by regulating proinflammatory signaling, immune cell infiltration,and metastasis. However, the diversity and complexity in the regulation of chemokine expression and how chemokine receptor signaling influences TME needs comprehensive understanding. One mechanistic pathway that has shown promising early results in targeting tumor progression is the non-coding RNAs (ncRNAs). These are widely expressed and designated as prime gene regulatory factors in tumors and the immune system. Notably, ncRNAs have been implicated in regulating chromatin stability, translation of cytoplasmic mRNAs, and the functional regulation of membrane-less nuclear bodies, which are significant pathways implicated in tumorigenesis. Tissue-specific patterns of expression of ncRNAs have suggested their role as potential cancer biomarkers, providing a suitable rationale for targeting them clinically. In this review, we discuss the recent findings which demonstrate the role of differential expression of chemokines and ncRNA in modulating TME during tumor progression. We also discuss the communication between tumor and immune effector cells via chemokine/ncRNAs and identify their potential as novel therapeutic targets.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias/patología , ARN no Traducido/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Transformación Celular Neoplásica , Carcinogénesis
4.
Semin Cancer Biol ; 85: 155-163, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314819

RESUMEN

Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética
5.
Hum Mol Genet ; 30(18): 1734-1749, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34007987

RESUMEN

High-altitude (HA, >2500 m) hypoxic exposure evokes several physiological processes that may be abetted by differential genetic distribution in sojourners, who are susceptible to various HA disorders, such as high-altitude pulmonary edema (HAPE). The genetic variants in hypoxia-sensing genes influence the transcriptional output; however the functional role has not been investigated in HAPE. This study explored the two hypoxia-sensing genes, prolyl hydroxylase domain protein 2 (EGLN1) and factor inhibiting HIF-1α (HIF1AN) in HA adaptation and maladaptation in three well-characterized groups: highland natives, HAPE-free controls and HAPE-patients. The two genes were sequenced and subsequently validated through genotyping of significant single nucleotide polymorphisms (SNPs), haplotyping and multifactor dimensionality reduction. Three EGLN1 SNPs rs1538664, rs479200 and rs480902 and their haplotypes emerged significant in HAPE. Blood gene expression and protein levels also differed significantly (P < 0.05) and correlated with clinical parameters and respective alleles. The RegulomeDB annotation exercises of the loci corroborated regulatory role. Allele-specific differential expression was evidenced by luciferase assay followed by electrophoretic mobility shift assay, liquid chromatography with tandem mass spectrometry and supershift assays, which confirmed allele-specific transcription factor (TF) binding of FUS RNA-binding protein (FUS) with rs1538664A, Rho GDP dissociation inhibitor 1 (ARHDGIA) with rs479200T and hypoxia upregulated protein 1 (HYOU1) with rs480902C. Docking simulation studies were in sync for the DNA-TF structural variations. There was strong networking among the TFs that revealed physiological consequences through relevant pathways. The two hydroxylases appear crucial in the regulation of hypoxia-inducible responses.


Asunto(s)
Mal de Altura , Sitios Genéticos , Hipertensión Pulmonar , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Oxigenasas de Función Mixta , Polimorfismo de Nucleótido Simple , Edema Pulmonar , Proteínas Represoras , Células A549 , Altitud , Mal de Altura/enzimología , Mal de Altura/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/biosíntesis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Oxigenasas de Función Mixta/biosíntesis , Oxigenasas de Función Mixta/genética , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo
6.
Funct Integr Genomics ; 23(3): 223, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410302

RESUMEN

The anillin actin-binding protein (ANLN) is immensely overexpressed in cancers, including lung cancer (LC). Phytocompounds have gained interest due to their broader potential and reduced unwanted effects. Screening numerous compounds presents a challenge, but in silico molecular docking is pragmatic. The present study aims to identify the role of ANLN in lung adenocarcinoma (LUAD), along with identification and interaction analysis of anticancer and ANLN inhibitory phytocompounds followed by molecular dynamics (MD) simulation. Using a systematic approach, we found that ANLN is significantly overexpressed in LUAD and mutated with a frequency of 3.73%. It is linked with advanced stages, clinicopathological parameters, worsening of relapse-free survival (RFS), and overall survival (OS), pinpointing its oncogenic and prognostic potential. High-throughput screening and molecular docking of phytocompounds revealed that kaempferol (flavonoid aglycone) interacts strongly with the active site of ANLN protein via hydrogen bonds, Vander Waals interactions, and acts as a potent inhibitor. Furthermore, we discovered that ANLN expression was found to be significantly higher (p) in LC cells compared to normal cells. This is a propitious and first study to demonstrate ANLN and kaempferol interactions, which might eventually lead to removal of rout from cell cycle regulation posed by ANLN overexpression and allow it to resume normal processes of proliferation. Overall, this approach suggested a plausible biomarker role of ANLN and the combination of molecular docking subsequently led to the identification of contemporary phytocompounds, bearing symbolic anticancer effects. The findings would be advantageous for pharmaceutics but require validation using in vitro and in vivo methods. HIGHLIGHTS: • ANLN is significantly overexpressed in LUAD. • ANLN is implicated in the infiltration of TAMs and altering plasticity of TME. • Kaempferol (potential ANLN inhibitor) shows important interactions with ANLN which could remove the alterations in cell cycle regulation, imposed by ANLN overexpression eventually leading to normal process of cell proliferation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas de Microfilamentos/metabolismo , Quempferoles , Pronóstico , Simulación del Acoplamiento Molecular , Multiómica , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
7.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448062

RESUMEN

Speech emotion recognition (SER) is a challenging task in human-computer interaction (HCI) systems. One of the key challenges in speech emotion recognition is to extract the emotional features effectively from a speech utterance. Despite the promising results of recent studies, they generally do not leverage advanced fusion algorithms for the generation of effective representations of emotional features in speech utterances. To address this problem, we describe the fusion of spatial and temporal feature representations of speech emotion by parallelizing convolutional neural networks (CNNs) and a Transformer encoder for SER. We stack two parallel CNNs for spatial feature representation in parallel to a Transformer encoder for temporal feature representation, thereby simultaneously expanding the filter depth and reducing the feature map with an expressive hierarchical feature representation at a lower computational cost. We use the RAVDESS dataset to recognize eight different speech emotions. We augment and intensify the variations in the dataset to minimize model overfitting. Additive White Gaussian Noise (AWGN) is used to augment the RAVDESS dataset. With the spatial and sequential feature representations of CNNs and the Transformer, the SER model achieves 82.31% accuracy for eight emotions on a hold-out dataset. In addition, the SER system is evaluated with the IEMOCAP dataset and achieves 79.42% recognition accuracy for five emotions. Experimental results on the RAVDESS and IEMOCAP datasets show the success of the presented SER system and demonstrate an absolute performance improvement over the state-of-the-art (SOTA) models.


Asunto(s)
Redes Neurales de la Computación , Habla , Humanos , Algoritmos , Sistemas de Computación , Emociones
8.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37300033

RESUMEN

The permittivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permittivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permittivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permittivity of materials.


Asunto(s)
Electricidad , Refracción Ocular , Conductividad Eléctrica
9.
J Cell Biochem ; 123(3): 673-690, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35037717

RESUMEN

COVID-19 is a sneaking deadly disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid increase in the number of infected patients worldwide enhances the exigency for medicines. However, precise therapeutic drugs are not available for COVID-19; thus, exhaustive research is critically required to unscramble the pathogenic tools and probable therapeutic targets for the development of effective therapy. This study utilizes a chemogenomics strategy, including computational tools for the identification of viral-associated differentially expressed genes (DEGs), and molecular docking of potential chemical compounds available in antiviral, anticancer, and natural product-based libraries against these DEGs. We scrutinized the messenger RNA expression profile of SARS-CoV-2 patients, publicly available on the National Center for Biotechnology Information-Gene Expression Omnibus database, stratified them into different groups based on the severity of infection, superseded by identification of overlapping mild and severe infectious (MSI)-DEGs. The profoundly expressed MSI-DEGs were then subjected to trait-linked weighted co-expression network construction and hub module detection. The hub module MSI-DEGs were then exposed to enrichment (gene ontology + pathway) and protein-protein interaction network analyses where Rho guanine nucleotide exchange factor 1 (ARHGEF1) gene conjectured in all groups and could be a probable target of therapy. Finally, we used the molecular docking and molecular dynamics method to identify inherent hits against the ARHGEF1 gene from antiviral, anticancer, and natural product-based libraries. Although the study has an identified significant association of the ARHGEF1 gene in COVID19; and probable compounds targeting it, using in silico methods, these targets need to be validated by both in vitro and in vivo methods to effectively determine their therapeutic efficacy against the devastating virus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , COVID-19/genética , Ontología de Genes , Humanos , Simulación del Acoplamiento Molecular , Factores de Intercambio de Guanina Nucleótido Rho , SARS-CoV-2/genética
10.
Curr Issues Mol Biol ; 45(1): 1-11, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36661487

RESUMEN

Pro-inflammatory macrophage polarization is crucial in acute inflammatory diseases like Acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Prostaglandin E2 (PGE2) is believed to promote inflammation in such cases. Therefore, our study aimed to deliver anti-prostaglandin E synthase 2 small interfering RNA antibodies (anti-PGE2-siRNA) through lipid nanoparticles (LNPs) in RAW264.7 (The murine macrophage cell line) to find a possible cure to the acute inflammatory diseases. LNPs were synthesized by using thin layer evaporation method and were characterized by dynamic light scattering (DLS), Zeta potential, SEM and TEM analysis. The obtained NPs were spherical with an average size of 73 nm and zeta potential +29mV. MTT assay revealed that these NPs were non-toxic in nature. Gel retardation assay displayed 5:2 ratio of siRNA and NPs as the best siRNA:LNPs ratio for the delivery of siRNA into cells. After siRNA delivery by using LNPs, real time gene expression analysis revealed significant decrease in the expression of PGE2. Western blot results confirmed that silencing of PGE2 gene influence inducible nitric oxide synthase (iNOS) and interlukin-1ß (1L-1ß), markers involved in pro-inflammatory macrophage polarization. Our study revealed that LNPs synthesized in present study can be one of the effective methods to deliver anti-PGE2-siRNA to control pro-inflammatory macrophage polarization for the treatment of acute inflammatory response.

11.
Clin Exp Pharmacol Physiol ; 49(11): 1232-1245, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35866379

RESUMEN

Cardiovascular diseases are the most disturbing problems throughout the world. The side effects of existing drugs are continuously compelling the scientist to look for better options in terms of safety, efficacy and cost-effectiveness. Our study is also a move in this direction. We have chosen D-pinitol to see its cardioprotective role in isoproterenol-induced myocardial infarction in Swiss albino mice. Grouping was made by dividing mice into eight groups (n = 6). Group I, control; Group II, isoproterenol (ISO) (150 mg/kg, i.p.); Group III, D-pinitol (PIN) (25 mg); Group IV, PIN (50 mg); Group V, PIN (100 mg) per kg per oral, respectively with ISO; Group VI, PIN per se (100 mg D-pinitol only); Group VII, Propranolol (PRO) (20 mg/kg/oral) with ISO; and Group VIII, PRO per se (20 mg/kg, p.o.). After 24 h of the last dose, the blood sample was collected for biochemical parameters, then mice were, killed through cervical dislocation under anaesthesia and cardiac tissue was collected for biochemical, histopathological and ultrastructural evaluation. Administration of ISO in mice altered the level of antioxidant markers, cardiac injury markers and inflammatory markers, which were significantly restored towards normal by D-pinitol at the dose of 50 and 100 mg. 25 mg of D-pinitol dosage, did not produce significant cardio protection. The histopathological and ultrastructural analysis further confirmed these findings. Our study showed that D-pinitol significantly protected myocardial damage which was induced by ISO and reverted oxidative stress and inflammation considerably.


Asunto(s)
Antioxidantes , Infarto del Miocardio , Animales , Antioxidantes/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Cardiotónicos/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inositol/análogos & derivados , Isoproterenol/toxicidad , Ratones , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Estrés Oxidativo , Propranolol/efectos adversos , Propranolol/metabolismo , Ratas , Ratas Wistar
12.
Andrologia ; 52(4): e13535, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32048763

RESUMEN

Cyclophosphamide (CP) is commonly used as antineoplastic and immunosuppressant drug with noticeable gonadotoxic profile. Nerolidol (NER) is a sesquiterpene with potent antioxidant and anti-inflammatory properties. Thus, the present study was designed to explore its possible gonadal protective potential against cyclophosphamide-induced testicular, epididymal, seminal and spermatozoal toxicities. Animals were divided into five groups: control (normal saline for 14 days), treatment group (NER 200 and 400 mg/kg, p.o) for 14 days along with a single dose of cyclophosphamide (200 mg/kg, i.p) on 7th day, toxic and Per se groups (cyclophosphamide 200 mg/kg i.p) on 7th day and NER 400 mg/kg for 14 days respectively. Animals were sacrificed on the 15 day, and body weight, weight of reproductive organs, testosterone level, sperm count, biochemical parameters, histopathological and immunohistochemical studies were performed in the testes, epididymis and in the serum. CP administration induced oxidative stress, nitrative stress, inflammation, reduced testosterone level, sperm count, increased expression of MPO and caused histological aberrations in the testes, epididymis and seminal vesicles. CP caused reduced sperm count, sperm motility and testosterone level which got reversed upon treatment with nerolidol in a dose-dependent manner. Nerolidol thus acted as a gonadoprotective molecule and prevented the gonadotoxicity of CP.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Ciclofosfamida/efectos adversos , Enfermedades de los Genitales Masculinos/prevención & control , Sesquiterpenos/uso terapéutico , Testículo/efectos de los fármacos , Animales , Evaluación Preclínica de Medicamentos , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Enfermedades de los Genitales Masculinos/inducido químicamente , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Sesquiterpenos/farmacología , Testículo/metabolismo , Testosterona/sangre , Factor de Necrosis Tumoral alfa/metabolismo
13.
Molecules ; 25(12)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575718

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are serious clinical complications with a high frequency of morbidity and mortality. The initiation and amplification of inflammation is a well-known aspect in the pathogenesis of ALI and related disorders. Therefore, inhibition of the inflammatory mediators could be an ideal approach to prevent ALI. Epigallocatechin-3-gallate (EGCG), a major constituent of green tea, has been shown to have protective effects on oxidative damage and anti-inflammation. The goal of the present study was to determine whether EGCG improves phenotype and macrophage polarisation in LPS-induced ALI. C57BL/6 mice were given two doses of EGCG (15 mg/kg) intraperitoneally (IP) 1 h before and 3 h after LPS instillation (2 mg/kg). EGCG treatment improved histopathological lesions, Total Leucocyte count (TLC), neutrophils infiltration, wet/dry ratio, total proteins and myeloperoxidase (MPO) activity in LPS-induced lung injury. The results displayed that EGCG reduced LPS-induced ALI as it modulates macrophage polarisation towards M2 status. Furthermore, EGCG also reduced the expression of proinflammatory M1 mediators iNOS TNF-α, IL-1ß and IL-6 in the LPS administered lung microenvironment. In addition, it increased the expression of KLF4, Arg1 and ym1, known to augment the M2 phenotype of macrophages. EGCG also alleviated the expression of 8-OHdG, nitrotyrosine, showing its ability to inhibit oxidative damage. TREM1 in the lung tissue and improved lung regenerative capacity by enhancing Ki67, PCNA and Ang-1 protein expression. Together, these results proposed the protective properties of EGCG against LPS-induced ALI in may be attributed to the suppression of M1/M2 macrophages subtype ratio, KLF4 augmentation, lung cell regeneration and regulating oxidative damage in the LPS-induced murine ALI.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Catequina/análogos & derivados , Factores de Transcripción de Tipo Kruppel/metabolismo , Macrófagos/metabolismo , Té/química , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/fisiopatología , Animales , Antiinflamatorios/administración & dosificación , Arginasa/metabolismo , Catequina/administración & dosificación , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Factor 4 Similar a Kruppel , Lectinas/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
14.
Am J Respir Cell Mol Biol ; 60(3): 308-322, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30281332

RESUMEN

Hyperoxia-induced injury to the developing lung, impaired alveolarization, and dysregulated vascularization are critical factors in the pathogenesis of bronchopulmonary dysplasia (BPD); however, mechanisms for hyperoxia-induced development of BPD are not fully known. In this study, we show that TREM-1 (triggering receptor expressed on myeloid cells 1) is upregulated in hyperoxia-exposed neonatal murine lungs as well as in tracheal aspirates and lungs of human neonates with respiratory distress syndrome and BPD as an adaptive response to survival in hyperoxia. Inhibition of TREM-1 function using an siRNA approach or deletion of the Trem1 gene in mice showed enhanced lung inflammation, alveolar damage, and mortality of hyperoxia-exposed neonatal mice. The treatment of hyperoxia-exposed neonatal mice with agonistic TREM-1 antibody decreased lung inflammation, improved alveolarization, and was associated with diminished necroptosis-regulating protein RIPK3 (receptor-interacting protein kinase 3). Mechanistically, we show that TREM-1 activation alleviates lung inflammation and improves alveolarization through downregulating RIPK3-mediated necroptosis and NLRP3 (nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3) inflammasome activation in hyperoxia-exposed neonatal mice. These data show that activating TREM-1, enhancing angiopoietin 1 signaling, or blocking the RIPK3-mediated necroptosis pathway may be used in new therapeutic interventions to control adverse effects of hyperoxia in the development of BPD.


Asunto(s)
Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Necroptosis/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/metabolismo , Regulación hacia Abajo/fisiología , Humanos , Recién Nacido , Inflamasomas/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
16.
Angew Chem Int Ed Engl ; 57(24): 7116-7119, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29669180

RESUMEN

Macrophage migration inhibitory factor (MIF) activates CD74, which leads to severe disorders including inflammation, autoimmune diseases and cancer under pathological conditions. Molecular dynamics (MD) simulations up to one microsecond revealed dynamical correlation between a residue located at the opening of one end of the MIF solvent channel, previously thought to be a consequence of homotrimerization, and residues in a distal region responsible for CD74 activation. Experiments verified the allosteric regulatory site and identified a pathway to this site via the MIF ß-strands. The reported findings provide fundamental insights on a dynamic mechanism that controls the MIF-induced activation of CD74.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Sitio Alostérico , Antígenos de Diferenciación de Linfocitos B/química , Antígenos de Histocompatibilidad Clase II/química , Humanos , Inflamación/metabolismo , Oxidorreductasas Intramoleculares/química , Factores Inhibidores de la Migración de Macrófagos/química , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta
17.
Am J Respir Cell Mol Biol ; 55(5): 722-735, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374190

RESUMEN

Administration of supplemental oxygen remains a critical clinical intervention for survival of preterm infants with respiratory failure. However, prolonged exposure to hyperoxia can augment pulmonary damage, resulting in developmental lung diseases embodied as hyperoxia-induced acute lung injury and bronchopulmonary dysplasia (BPD). We sought to investigate the role of autophagy in hyperoxia-induced apoptotic cell death in developing lungs. We identified increased autophagy signaling in hyperoxia-exposed mouse lung epithelial-12 cells, freshly isolated fetal type II alveolar epithelial cells, lungs of newborn wild-type mice, and human newborns with respiratory distress syndrome and evolving and established BPD. We found that hyperoxia exposure induces autophagy in a Trp53-dependent manner in mouse lung epithelial-12 cells and in neonatal mouse lungs. Using pharmacological inhibitors and gene silencing techniques, we found that the activation of autophagy, upon hyperoxia exposure, demonstrated a protective role with an antiapoptotic response. Specifically, inhibiting regulatory-associated protein of mechanistic target of rapamycin (RPTOR) in hyperoxia settings, as evidenced by wild-type mice treated with torin2 or mice administered (Rptor) silencing RNA via intranasal delivery or Rptor+/-, limited lung injury by increased autophagy, decreased apoptosis, improved lung architecture, and increased survival. Furthermore, we identified increased protein expression of phospho-beclin1, light chain-3-II and lysosomal-associated membrane protein 1, suggesting altered autophagic flux in the lungs of human neonates with established BPD. Collectively, our study unveils a novel demonstration of enhancing autophagy and antiapoptotic effects, specifically through the inhibition of RPTOR as a potentially useful therapeutic target for the treatment of hyperoxia-induced acute lung injury and BPD in developing lungs.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Autofagia , Hiperoxia/complicaciones , Hiperoxia/patología , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Línea Celular , Femenino , Humanos , Hiperoxia/metabolismo , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/patología , Recién Nacido , Pulmón/metabolismo , Pulmón/patología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Naftiridinas/farmacología , Fenotipo , Proteína Reguladora Asociada a mTOR , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L426-38, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26684249

RESUMEN

Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. Synergy between TREM-1 and Toll-like receptor amplifies the inflammatory response; however, the mechanisms by which TREM-1 accentuates inflammation are not fully understood. In this study, we investigated the role of TREM-1 in a model of LPS-induced lung injury and neutrophilic inflammation. We show that TREM-1 is induced in lungs of mice with LPS-induced acute neutrophilic inflammation. TREM-1 knockout mice showed an improved survival after lethal doses of LPS with an attenuated inflammatory response in the lungs. Deletion of TREM-1 gene resulted in significantly reduced neutrophils and proinflammatory cytokines and chemokines, particularly IL-1ß, TNF-α, and IL-6. Physiologically deletion of TREM-1 conferred an immunometabolic advantage with low oxygen consumption rate (OCR) sparing the respiratory capacity of macrophages challenged with LPS. Furthermore, we show that TREM-1 deletion results in significant attenuation of expression of miR-155 in macrophages and lungs of mice treated with LPS. Experiments with antagomir-155 confirmed that TREM-1-mediated changes were indeed dependent on miR-155 and are mediated by downregulation of suppressor of cytokine signaling-1 (SOCS-1) a key miR-155 target. These data for the first time show that TREM-1 accentuates inflammatory response by inducing the expression of miR-155 in macrophages and suggest a novel mechanism by which TREM-1 signaling contributes to lung injury. Inhibition of TREM-1 using a nanomicellar approach resulted in ablation of neutrophilic inflammation suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic lung inflammation and acute respiratory distress syndrome (ARDS).


Asunto(s)
Lesión Pulmonar/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , MicroARNs/genética , Receptores Inmunológicos/metabolismo , Animales , Citocinas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Nanomedicina/métodos , ARN Interferente Pequeño/metabolismo , Receptor Activador Expresado en Células Mieloides 1
19.
Proc Natl Acad Sci U S A ; 110(27): 10994-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776208

RESUMEN

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine. In addition to its known receptor-mediated biological activities, MIF possesses a catalytic site of unknown function between subunits of a homotrimer. Each subunit contributes three ß-strands to adjacent subunits to form a core seven-stranded ß-sheet for each monomer. MIF monomers, dimers, or trimers have been reported, but the active form that binds and activates the MIF receptor (CD74) is still a matter of debate. A cysteine mutant (N110C) that covalently locks MIF into a trimer by forming a disulfide with Cys-80 of an adjacent subunit is used to study this issue. Partial catalytic activity and receptor binding to CD74 are retained by N110C (locked trimer), but there is no cellular signaling. Wild-type MIF-induced cellular signaling, in vivo lung neutrophil accumulation, and alveolar permeability are inhibited with a fivefold excess of N110C. NMR and size-exclusion chromatography with light scattering reveal that N110C can form a higher-order oligomer in equilibrium with a single locked trimer. The X-ray structure confirms a local conformational change that disrupts the subunit interface and results in global changes responsible for the oligomeric form. The structure also confirms these changes are consistent for the partial catalytic and receptor binding activities. The absence of any potential monomer and the retention of partial catalytic and receptor binding activities despite changes in conformation (and dynamics) in the mutant support an endogenous MIF trimer that binds and activates CD74 at nanomolar concentrations. This conclusion has implications for therapeutic development.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/genética , Animales , Cristalografía por Rayos X , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Receptores Inmunológicos/metabolismo
20.
J Biol Chem ; 289(21): 15118-29, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24711453

RESUMEN

Triggering receptor expressed on myeloid cells 1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells that plays an important role in the amplification of inflammation. Recent studies suggest a role for TREM-1 in tumor-associated macrophages with relationship to tumor growth and progression. Whether the effects of TREM-1 on inflammation and tumor growth are mediated by an alteration in cell survival signaling is not known. In these studies, we show that TREM-1 knock-out macrophages exhibit an increase in apoptosis of cells in response to lipopolysaccharide (LPS) suggesting a role for TREM-1 in macrophage survival. Specific ligation of TREM-1 with monoclonal TREM-1 (mTREM-1) or overexpression of TREM-1 with adeno-TREM-1 induced B-cell lymphoma-2 (Bcl-2) with depletion of the key executioner caspase-3 prevents the cleavage of poly(ADP-ribose) polymerase. TREM-1 knock-out cells showed lack of induction of Bcl2 with an increase in caspase-3 activation in response to lipopolysaccharide. In addition overexpression of TREM-1 with adeno-TREM-1 led to an increase in mitofusins (MFN1 and MFN2) and knockdown of TREM-1 decreased the expression of mitofusins suggesting that TREM-1 contributes to the maintenance of mitochondrial integrity favoring cell survival. Investigations into potential mechanisms by which TREM-1 alters cell survival showed that TREM-1-induced Bcl-2 in an Egr2-dependent manner. Furthermore, our data shows that expression of Egr2 in response to specific ligation of TREM-1 is ERK mediated. These data for the first time provide novel mechanistic insights into the role of TREM-1 as an anti-apoptotic protein that prolongs macrophage survival.


Asunto(s)
Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/genética , Células Cultivadas , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , Macrófagos/citología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN , Receptores Inmunológicos/genética , Receptor Activador Expresado en Células Mieloides 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA