Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Cancer ; 132(11): 2510-9, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23136038

RESUMEN

Continuous human cell lines have been used extensively as models for biomedical research. In working with these cell lines, researchers are often unaware of the risk of cross-contamination and other causes of misidentification. To reduce this risk, there is a pressing need to authenticate cell lines, comparing the sample handled in the laboratory to a previously tested sample. The American Type Culture Collection Standards Development Organization Workgroup ASN-0002 has developed a Standard for human cell line authentication, recommending short tandem repeat (STR) profiling for authentication of human cell lines. However, there are known limitations to the technique when applied to cultured samples, including possible genetic drift with passage. In our study, a dataset of 2,279 STR profiles from four cell banks was used to assess the effectiveness of the match criteria recommended within the Standard. Of these 2,279 STR profiles, 1,157 were grouped into sets of related cell lines-duplicate holdings, legitimately related samples or misidentified cell lines. Eight core STR loci plus amelogenin were used to unequivocally authenticate 98% of these related sets. Two simple match algorithms each clearly discriminated between related and unrelated samples, with separation between related samples at ≥80% match and unrelated samples at <50% match. A small degree of overlap was noted at 50-79% match, mostly from cell lines known to display variable STR profiles. These match criteria are recommended as a simple and effective way to interpret results from STR profiling of human cell lines.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Técnicas de Genotipaje/normas , Repeticiones de Microsatélite/genética , Línea Celular , Humanos , Reacción en Cadena de la Polimerasa
2.
BMC Biol ; 4: 28, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16919167

RESUMEN

BACKGROUND: Human embryonic stem cells (hESC) offer a renewable source of a wide range of cell types for use in research and cell-based therapies to treat disease. Inspection of protein markers provides important information about the current state of the cells and data for subsequent manipulations. However, hESC must be routinely analyzed at the genomic level to guard against deleterious changes during extensive propagation, expansion, and manipulation in vitro. RESULTS: We found that short tandem repeat (STR) analysis, human leukocyte antigen (HLA) typing, single nucleotide polymorphism (SNP) genomic analysis, mitochondrial DNA sequencing, and gene expression analysis by microarray can be used to fully describe any hESC culture in terms of its identity, stability, and undifferentiated state. CONCLUSION: Here we describe, using molecular biology alone, a comprehensive characterization of 17 different hESC lines. The use of amplified nucleic acids means that for the first time full characterization of hESC lines can be performed with little time investment and a minimum of material. The information thus gained will facilitate comparison of lines and replication of results between laboratories.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Diferenciación Celular , Técnicas de Cocultivo , Marcadores Genéticos , Antígenos HLA/genética , Humanos , Repeticiones de Microsatélite , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple
3.
In Vitro Cell Dev Biol Anim ; 46(9): 727-32, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20614197

RESUMEN

Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.


Asunto(s)
Biología Celular/normas , Perfilación de la Expresión Génica/métodos , Repeticiones de Microsatélite/genética , Manejo de Especímenes/métodos , Bancos de Tejidos/normas , Línea Celular , Humanos , Células Madre , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA