Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38539995

RESUMEN

The aim of the study was to investigate the effect of calcareous marine algae (Lithotamium calcareum)-based rumen content buffer (CMA) included in concentrated feed within total mixed ration (TMR), fed to 34 peak lactation (87-144 days in milk) Holstein dairy cows, randomized into two groups (group A, n = 17; group B, n = 17), wearing collars with accelerometers, and housed a in barn with automatic feed-weigh troughs. During the first phase P1, group A received TMR with CMA (TMR-E) and group B was fed TMR without the buffer (TMR-C). For P2, the treatments in the groups were exchanged. Feed intake, feeding time (FT), rumination time (RT), milk yield, milk composition, and rumen pH were measured by barn technologies, and rumen fluid and feces composition were analyzed in the laboratory. Differences between the TMR-E and TMR-C in most parameters under study were statistically insignificant, except overall FT and RT, which differed significantly between the groups. Group A, feeding at P1 by TMR-E, exhibited higher FT and RT than Group B (202 min/cow/day vs. 184 min/cow/day, and 486 min/cow/day vs. 428 min/cow/day, respectively). The RT significantly increased after switching from TMR-C to TMR-E. This implies that the buffer effect is delayed and persists after the withdrawal. In the group of cows that received control TMR without buffer in the first phase, RT and milk protein content increased significantly in the first week after the addition of buffer.

2.
J Biomed Mater Res B Appl Biomater ; 85(1): 240-51, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17853424

RESUMEN

Ultra-high molecular weight polyethylene (UHMWPE) was irradiated with accelerated electrons (1 MeV in air) using high dose rates (> 25 kGy/min) and thin specimens (thickness 1 mm). Parts of the specimens were remelted (200 degrees C for 10 min; 150 degrees C for 0, 2, 10, 30, 60 min). All specimens were stored in nitrogen in the dark at 5 degrees C. Supermolecular structure, extent of crosslinking, oxidative degradation, and macroradical content were studied by a number of methods (SAXS, WAXS, SEM, DSC, FTIR, ESR, TGA, solubility experiments, image analysis). The results obtained with irradiated samples were compared with those obtained with irradiated and remelted samples. It was confirmed that crosslinking predominates over chain scission at very high dose rates, even if the irradiation is performed in air. Discrepancies concerning supermolecular structure changes in UHMWPE after irradiation and thermal treatment, found in various studies in the literature, are discussed. A simple model, which describes and explains all supermolecular structure changes, is introduced. An effective way of eliminating residual macroradicals in UHMWPE is proposed.


Asunto(s)
Materiales Biocompatibles , Electrones , Ensayo de Materiales , Polietilenos , Radiación , Temperatura , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Rastreo Diferencial de Calorimetría , Análisis de Falla de Equipo , Humanos , Prótesis Articulares , Microscopía Electrónica de Rastreo , Estructura Molecular , Oxidación-Reducción , Polietilenos/química , Polietilenos/efectos de la radiación , Falla de Prótesis , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA