Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 91(3): 367-379, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34952975

RESUMEN

OBJECTIVE: The purpose of this study was to describe cerebrovascular, neuropathic, and autonomic features of post-acute sequelae of coronavirus disease 2019 ((COVID-19) PASC). METHODS: This retrospective study evaluated consecutive patients with chronic fatigue, brain fog, and orthostatic intolerance consistent with PASC. Controls included patients with postural tachycardia syndrome (POTS) and healthy participants. Analyzed data included surveys and autonomic (Valsalva maneuver, deep breathing, sudomotor, and tilt tests), cerebrovascular (cerebral blood flow velocity [CBFv] monitoring in middle cerebral artery), respiratory (capnography monitoring), and neuropathic (skin biopsies for assessment of small fiber neuropathy) testing and inflammatory/autoimmune markers. RESULTS: Nine patients with PASC were evaluated 0.8 ± 0.3 years after a mild COVID-19 infection, and were treated as home observations. Autonomic, pain, brain fog, fatigue, and dyspnea surveys were abnormal in PASC and POTS (n = 10), compared with controls (n = 15). Tilt table test reproduced the majority of PASC symptoms. Orthostatic CBFv declined in PASC (-20.0 ± 13.4%) and POTS (-20.3 ± 15.1%), compared with controls (-3.0 ± 7.5%, p = 0.001) and was independent of end-tidal carbon dioxide in PASC, but caused by hyperventilation in POTS. Reduced orthostatic CBFv in PASC included both subjects without (n = 6) and with (n = 3) orthostatic tachycardia. Dysautonomia was frequent (100% in both PASC and POTS) but was milder in PASC (p = 0.002). PASC and POTS cohorts diverged in frequency of small fiber neuropathy (89% vs 60%) but not in inflammatory markers (67% vs 70%). Supine and orthostatic hypocapnia was observed in PASC. INTERPRETATION: PASC following mild COVID-19 infection is associated with multisystem involvement including: (1) cerebrovascular dysregulation with persistent cerebral arteriolar vasoconstriction; (2) small fiber neuropathy and related dysautonomia; (3) respiratory dysregulation; and (4) chronic inflammation. ANN NEUROL 2022;91:367-379.


Asunto(s)
Presión Sanguínea/fisiología , COVID-19/complicaciones , Circulación Cerebrovascular/fisiología , Frecuencia Cardíaca/fisiología , Mediadores de Inflamación/sangre , Adulto , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/fisiopatología , Fatiga/sangre , Fatiga/diagnóstico , Fatiga/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intolerancia Ortostática/sangre , Intolerancia Ortostática/diagnóstico , Intolerancia Ortostática/fisiopatología , Estudios Retrospectivos , Síndrome Post Agudo de COVID-19
2.
Respir Res ; 23(1): 325, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457013

RESUMEN

BACKGROUND: Without aggressive treatment, pulmonary arterial hypertension (PAH) has a 5-year mortality of approximately 40%. A patient's response to vasodilators at diagnosis impacts the therapeutic options and prognosis. We hypothesized that analyzing perfusion images acquired before and during vasodilation could identify characteristic differences between PAH and control subjects. METHODS: We studied 5 controls and 4 subjects with PAH using HRCT and 13NN PET imaging of pulmonary perfusion and ventilation. The total spatial heterogeneity of perfusion (CV2Qtotal) and its components in the vertical (CV2Qvgrad) and cranio-caudal (CV2Qzgrad) directions, and the residual heterogeneity (CV2Qr), were assessed at baseline and while breathing oxygen and nitric oxide (O2 + iNO). The length scale spectrum of CV2Qr was determined from 10 to 110 mm, and the response of regional perfusion to O2 + iNO was calculated as the mean of absolute differences. Vertical gradients in perfusion (Qvgrad) were derived from perfusion images, and ventilation-perfusion distributions from images of 13NN washout kinetics. RESULTS: O2 + iNO significantly enhanced perfusion distribution differences between PAH and controls, allowing differentiation of PAH subjects from controls. During O2 + iNO, CV2Qvgrad was significantly higher in controls than in PAH (0.08 (0.055-0.10) vs. 6.7 × 10-3 (2 × 10-4-0.02), p < 0.001) with a considerable gap between groups. Qvgrad and CV2Qtotal showed smaller differences: - 7.3 vs. - 2.5, p = 0.002, and 0.12 vs. 0.06, p = 0.01. CV2Qvgrad had the largest effect size among the primary parameters during O2 + iNO. CV2Qr, and its length scale spectrum were similar in PAH and controls. Ventilation-perfusion distributions showed a trend towards a difference between PAH and controls at baseline, but it was not statistically significant. CONCLUSIONS: Perfusion imaging during O2 + iNO showed a significant difference in the heterogeneity associated with the vertical gradient in perfusion, distinguishing in this small cohort study PAH subjects from controls.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Voluntarios Sanos , Óxido Nítrico , Estudios de Cohortes , Hipertensión Pulmonar Primaria Familiar , Imagen de Perfusión , Biomarcadores , Oxígeno
3.
Neurol Sci ; 43(12): 6627-6638, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169757

RESUMEN

BACKGROUND: The autonomic nervous system (ANS) is a complex network where sympathetic and parasympathetic domains interact inside and outside of the network. Correlation-based network analysis (NA) is a novel approach enabling the quantification of these interactions. The aim of this study is to assess the applicability of NA to assess relationships between autonomic, sensory, respiratory, cerebrovascular, and inflammatory markers on post-acute sequela of COVID-19 (PASC) and postural tachycardia syndrome (POTS). METHODS: In this retrospective study, datasets from PASC (n = 15), POTS (n = 15), and matched controls (n = 11) were analyzed. Networks were constructed from surveys (autonomic and sensory), autonomic tests (deep breathing, Valsalva maneuver, tilt, and sudomotor test) results using heart rate, blood pressure, cerebral blood flow velocity (CBFv), capnography, skin biopsies for assessment of small fiber neuropathy (SFN), and various inflammatory markers. Networks were characterized by clusters and centrality metrics. RESULTS: Standard analysis showed widespread abnormalities including reduced orthostatic CBFv in 100%/88% (PASC/POTS), SFN 77%/88%, mild-to-moderate dysautonomia 100%/100%, hypocapnia 87%/100%, and elevated inflammatory markers. NA showed different signatures for both disorders with centrality metrics of vascular and inflammatory variables playing prominent roles in differentiating PASC from POTS. CONCLUSIONS: NA is suitable for a relationship analysis between autonomic and nonautonomic components. Our preliminary analyses indicate that NA can expand the value of autonomic testing and provide new insight into the functioning of the ANS and related systems in complex disease processes such as PASC and POTS.


Asunto(s)
COVID-19 , Síndrome de Taquicardia Postural Ortostática , Neuropatía de Fibras Pequeñas , Humanos , Síndrome de Taquicardia Postural Ortostática/complicaciones , Estudios Retrospectivos , COVID-19/complicaciones , Sistema Nervioso Autónomo , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología
4.
Rheumatology (Oxford) ; 60(3): 1429-1434, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33001175

RESUMEN

OBJECTIVE: Exercise intolerance is a common clinical manifestation of CTD. Frequently, CTD patients have associated cardio-pulmonary disease, including pulmonary hypertension or heart failure that impairs aerobic exercise capacity (pVO2). The contribution of the systemic micro-vasculature to reduced exercise capacity in CTD patients without cardiopulmonary disease has not been fully described. In this study, we sought to examine the role of systemic vascular distensibility, α in reducing exercise capacity (i.e. pVO2) in CTD patients. METHODS: Systemic and pulmonary vascular distensibility, α (%/mmHg) was determined from multipoint systemic pressure-flow plots during invasive cardiopulmonary exercise testing with pulmonary and radial arterial catheters in place in 42 CTD patients without cardiopulmonary disease and compared with 24 age and gender matched normal controls. RESULTS: During exercise, systemic vascular distensibility, α was reduced in CTD patients compared with controls (0.20 ± 0.12%/mmHg vs 0.30 ± 0.13%/mmHg, P =0.01). The reduced systemic vascular distensibility α, was associated with impaired stroke volume augmentation. On multivariate analysis, systemic vascular distensibility, α was associated with a decreased exercise capacity (pVO2) and decreased systemic oxygen extraction. CONCLUSION: Systemic vascular distensibility, α is associated with impaired systemic oxygen extraction and decreased aerobic capacity in patients with CTD without cardiopulmonary disease.


Asunto(s)
Enfermedades del Tejido Conjuntivo/fisiopatología , Tolerancia al Ejercicio/fisiología , Microvasos/fisiopatología , Enfermedades del Tejido Conjuntivo/complicaciones , Disnea/etiología , Disnea/fisiopatología , Elasticidad , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo
5.
Circ Res ; 122(6): 864-876, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29437835

RESUMEN

RATIONALE: Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking. OBJECTIVE: Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance. METHODS AND RESULTS: Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011-2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P<9.5e-46 for each correlation, we focused on a subnetwork containing peak volume of oxygen consumption (pVo2) and 9 linked nodes. K-mean clustering based on these 10 variables identified 4 novel patient clusters characterized by significant differences in 44 of 45 exercise measurements (P<0.01). Compared with a probabilistic model, including 23 independent predictors of pVo2 and pVo2 itself, the network model was less redundant and identified clusters that were more distinct. Cluster assignment from the network model was predictive of subsequent clinical events. For example, a 4.3-fold (P<0.0001; 95% CI, 2.2-8.1) and 2.8-fold (P=0.0018; 95% CI, 1.5-5.2) increase in hazard for age- and pVo2-adjusted all-cause 3-year hospitalization, respectively, were observed between the highest versus lowest risk clusters. Using these data, we developed the first risk-stratification calculator for patients with exercise intolerance. When applying the risk calculator to patients in 2 independent invasive cardiopulmonary exercise testing cohorts (Boston and Graz, Austria), we observed a clinical risk profile that paralleled the derivation cohort. CONCLUSIONS: Network analyses were used to identify novel exercise groups and develop a point-of-care risk calculator. These data expand the range of useful clinical variables beyond pVo2 that predict hospitalization in patients with exercise intolerance.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Tolerancia al Ejercicio , Anciano , Prueba de Esfuerzo/estadística & datos numéricos , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad
6.
Eur J Appl Physiol ; 119(10): 2375-2389, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31493035

RESUMEN

PURPOSE: The clinical investigation of exertional intolerance generally focuses on cardiopulmonary diseases, while peripheral factors are often overlooked. We hypothesize that a subset of patients exists whose predominant exercise limitation is due to abnormal systemic oxygen extraction (SOE). METHODS: We reviewed invasive cardiopulmonary exercise test (iCPET) results of 313 consecutive patients presenting with unexplained exertional intolerance. An exercise limit due to poor SOE was defined as peak exercise (Ca-vO2)/[Hb] ≤ 0.8 and VO2max < 80% predicted in the absence of a cardiac or pulmonary mechanical limit. Those with peak (Ca-vO2)/[Hb] > 0.8, VO2max ≥ 80%, and no cardiac or pulmonary limit were considered otherwise normal. The otherwise normal group was divided into hyperventilators (HV) and normals (NL). Hyperventilation was defined as peak PaCO2 < [1.5 × HCO3 + 6]. RESULTS: Prevalence of impaired SOE as the sole cause of exertional intolerance was 12.5% (32/257). At peak exercise, poor SOE and HV had less acidemic arterial blood compared to NL (pHa = 7.39 ± 0.05 vs. 7.38 ± 0.05 vs. 7.32 ± 0.02, p < 0.001), which was explained by relative hypocapnia (PaCO2 = 29.9 ± 5.4 mmHg vs. 31.6 ± 5.4 vs. 37.5 ± 3.4, p < 0.001). For a subset of poor SOE, this relative alkalemia, also seen in mixed venous blood, was associated with a normal PvO2 nadir (28 ± 2 mmHg vs. 26 ± 4, p = 0.627) but increased SvO2 at peak exercise (44.1 ± 5.2% vs. 31.4 ± 7.0, p < 0.001). CONCLUSIONS: We identified a cohort of patients whose exercise limitation is due only to systemic oxygen extraction, due to either an intrinsic abnormality of skeletal muscle mitochondrion, limb muscle microcirculatory dysregulation, or hyperventilation and left shift the oxyhemoglobin dissociation curve.


Asunto(s)
Umbral Anaerobio , Capacidad Cardiovascular , Tolerancia al Ejercicio , Ejercicio Físico/fisiología , Adulto , Anciano , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Intercambio Gaseoso Pulmonar , Ventilación Pulmonar
7.
J Card Fail ; 24(3): 169-176, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29180305

RESUMEN

BACKGROUND: In heart failure with preserved ejection fraction (HFpEF), the prognostic value of pulmonary vascular dysfunction (PV-dysfunction), identified by elevated pulmonary vascular resistance (PVR) at peak exercise, is not completely understood. We evaluated the long-term prognostic implications of PV-dysfunction in HFpEF during exercise in consecutive patients undergoing invasive cardiopulmonary exercise testing for unexplained dyspnea. METHODS: Patients with HFpEF were classified into 2 main groups: resting HFpEF (n = 104, 62% female, age 61 years) with a pulmonary arterial wedge pressure (PAWP) >15 mmHg at rest; and exercise HFpEF (eHFpEF; n = 81) with a PAWP <15 mmHg at rest, but >20 mmHg during exercise. The eHFpEF group was further subdivided into eHFpEF + PV-dysfunction (peak PVR ≥80 dynes/s/cm-5; n = 55, 60% female, age 64) group and eHFpEF - PV-dysfunction (peak PVR <80 dynes/s/cm-5; n = 26, 42% female, age 54 years) group. Outcomes were analyzed for the first 9 years of follow-up and included any cause mortality and heart failure (HF)-related hospitalizations. The mean follow-up time was 6.7 ± 2.6 years (0.5-9.0). RESULTS: Mortality rate did not differ among the groups. However, survival free of HF-related hospitalization was lower for the eHFpEF + PV-dysfunction group compared with eHFpEF - PV-dysfunction (P = .01). These findings were similar between eHFpEF + PV-dysfunction and the resting HFpEF group (P = .774). By Cox analysis, peak PVR ≥80 dynes/s/cm-5 was a predictor of HF-related hospitalization for eHFpEF (hazard ratio 5.73, 95% confidence interval 1.05-31.22, P = .01). In conclusion, the present study provides insight into the impact of PV-dysfunction on outcomes of patients with exercise-induced HFpEF. An elevated peak PVR is associated with a high risk of HF-related hospitalization.


Asunto(s)
Prueba de Esfuerzo/métodos , Tolerancia al Ejercicio/fisiología , Insuficiencia Cardíaca/fisiopatología , Volumen Sistólico/fisiología , Resistencia Vascular/fisiología , Función Ventricular Izquierda/fisiología , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Pronóstico , Presión Esfenoidal Pulmonar , Tasa de Supervivencia/tendencias , Factores de Tiempo , Estados Unidos/epidemiología
8.
Eur J Appl Physiol ; 118(7): 1415-1426, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29713818

RESUMEN

BACKGROUND: Right ventricular (RV) dysfunction and heart failure with preserved ejection fraction may contribute to exercise intolerance in obesity. To further define RV exercise responses, we investigated RV-arterial coupling in obesity with and without development of exercise pulmonary venous hypertension (ePVH). METHODS: RV-arterial coupling defined as RV end-systolic elastance/pulmonary artery elastance (Ees/Ea) was calculated from invasive cardiopulmonary exercise test data in 6 controls, 8 obese patients without ePVH (Obese-ePVH) and 8 obese patients with ePVH (Obese+ePVH) within a larger series. ePVH was defined as a resting pulmonary arterial wedge pressure < 15 mmHg but ≥ 20 mmHg on exercise. Exercise haemodynamics were further evaluated in 18 controls, 20 Obese-ePVH and 17 Obese+ePVH patients. RESULTS: Both Obese-ePVH and Obese+ePVH groups developed exercise RV-arterial uncoupling (peak Ees/Ea = 1.45 ± 0.26 vs 0.67 ± 0.18 vs 0.56 ± 0.11, p < 0.001, controls vs Obese-ePVH vs Obese+ePVH respectively) with higher peak afterload (peak Ea = 0.31 ± 0.07 vs 0.75 ± 0.32 vs 0.88 ± 0.62 mL/mmHg, p = 0.043) and similar peak contractility (peak Ees = 0.50 ± 0.16 vs 0.45 ± 0.22 vs 0.48 ± 0.17 mL/mmHg, p = 0.89). RV contractile reserve was highest in controls (ΔEes = 224 ± 80 vs 154 ± 39 vs 141 ± 34% of baseline respectively, p < 0.001). Peak Ees/Ea correlated with peak pulmonary vascular compliance (PVC, r = 0.53, p = 0.02) but not peak pulmonary vascular resistance (PVR, r = - 0.20, p = 0.46). In the larger cohort, Obese+ePVH patients on exercise demonstrated higher right atrial pressure, lower cardiac output and steeper pressure-flow responses. BMI correlated with peak PVC (r = - 0.35, p = 0.04) but not with peak PVR (r = 0.24, p = 0.25). CONCLUSIONS: Exercise RV-arterial uncoupling and reduced RV contractile reserve further characterise obesity-related exercise intolerance. RV dysfunction in obesity may develop independent of exercise LV filling pressures.


Asunto(s)
Función Atrial , Tolerancia al Ejercicio , Hipertensión Pulmonar/fisiopatología , Contracción Miocárdica , Obesidad/fisiopatología , Función Ventricular , Anciano , Circulación Coronaria , Ejercicio Físico , Femenino , Humanos , Hipertensión Pulmonar/etiología , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/diagnóstico por imagen , Circulación Pulmonar
9.
Eur Respir J ; 48(1): 158-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27126692

RESUMEN

Assessment of cardiac function during exercise can be technically demanding, making the recovery period a potentially attractive diagnostic window. However, the validity of this approach for exercise pulmonary haemodynamics has not been validated.The present study, therefore, evaluated directly measured pulmonary haemodynamics during 2-min recovery after maximum invasive cardiopulmonary exercise testing in patients evaluated for unexplained exertional intolerance. Based on peak exercise criteria, patients with exercise pulmonary hypertension (ePH; n=36), exercise pulmonary venous hypertension (ePVH; n=28) and age-matched controls (n=31) were analysed.By 2-min recovery, 83% (n=30) of ePH patients had a mean pulmonary artery pressure (mPAP) <30 mmHg and 96% (n=27) of ePVH patients had a pulmonary arterial wedge pressure (PAWP) <20 mmHg. Sensitivity of pulmonary hypertension-related haemodynamic measurements during recovery for ePH and ePVH diagnosis was ≤25%. In ePVH, pulmonary vascular compliance (PVC) returned to its resting value by 1-min recovery, while in ePH, elevated pulmonary vascular resistance (PVR) and decreased PVC persisted throughout recovery.In conclusion, we observed that mPAP and PAWP decay quickly during recovery in ePH and ePVH, compromising the sensitivity of recovery haemodynamic measurements in diagnosing pulmonary hypertension. ePH and ePVH had different PVR and PVC recovery patterns, suggesting differences in the underlying pulmonary hypertension pathophysiology.


Asunto(s)
Prueba de Esfuerzo/métodos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/fisiopatología , Presión Esfenoidal Pulmonar , Resistencia Vascular , Anciano , Ecocardiografía , Ejercicio Físico , Tolerancia al Ejercicio , Femenino , Monitorización Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Volumen Sistólico
10.
Eur Respir J ; 47(4): 1179-88, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26677941

RESUMEN

The exercise definition of pulmonary hypertension was eliminated from the pulmonary hypertension guidelines in part due to uncertainty of the upper limits of normal (ULNs) for exercise haemodynamics in subjects >50 years old.The present study, therefore, evaluated the pulmonary haemodynamic responses to maximum upright incremental cycling exercise in consecutive subjects who underwent an invasive cardiopulmonary exercise testing for unexplained exertional intolerance, deemed normal based on preserved exercise capacity and normal resting supine haemodynamics. Subjects aged >50 years old (n=41) were compared with subjects ≤50 years old (n=25). ULNs were calculated as mean + 2 sdPeak exercise mean pulmonary arterial pressure was not different for subjects >50 and ≤50 years old (23 ± 5 versus 22 ± 4 mmHg, p=0.22), with ULN of 33 and 30 mmHg, respectively. Peak cardiac output was lower in older subjects (median (interquartile range): 12.1 (9.4-14.2)versus16.2 (13.8-19.2) L·min(-1), p<0.001). Peak pulmonary vascular resistance was higher in older subjects compared with younger subjects (mean ± sd: 1.20 ± 0.45 versus 0.82 ± 0.26 Wood units, p<0.001), with ULN of 2.10 and 1.34 Wood units, respectively.We observed that subjects >50 and ≤ 50 years old have different pulmonary vascular responses to exercise. Older subjects have higher pulmonary vascular resistance at peak exercise, resulting in different exercise haemodynamics ULNs compared with the younger population.


Asunto(s)
Ejercicio Físico/fisiología , Hemodinámica/fisiología , Adulto , Anciano , Presión Arterial , Ciclismo , Gasto Cardíaco , Prueba de Esfuerzo/métodos , Tolerancia al Ejercicio/fisiología , Femenino , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Arteria Pulmonar , Descanso , Volumen Sistólico , Resistencia Vascular/fisiología
13.
Am J Physiol Heart Circ Physiol ; 307(1): H110-7, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24791784

RESUMEN

Impaired exercise capacity is common after the Fontan procedure and is attributed to cardiovascular limits. The Fontan circulation, however, is also distinctively vulnerable to unfavorable lung mechanics. This study aimed to define the prevalence and physiological relevance of pulmonary dysfunction in patients with Fontan physiology. We analyzed data from the Pediatric Heart Network Fontan Cross-Sectional Study to assess the prevalence and pattern of abnormal spirometry in Fontan patients (6-18 yr old) and investigated the relationship between low forced vital capacity (FVC) and maximum exercise variables, including peak O2 consumption (Vo2peak), among those who demonstrated adequate effort (n = 260). Average ages at the time of exercise testing and Fontan completion were 13.2 ± 3.0 and 3.5 ± 2.2 yr old, respectively. Aerobic capacity was reduced (Vo2peak: 67.3 ± 15.6% predicted). FVC averaged 79.0 ± 14.8% predicted, with 45.8% having a FVC less then the lower limit of normal. Only 7.8% demonstrated obstructive spirometry. Patients with low FVC had lower Vo2peak (64.4 ± 15.9% vs. 69.7 ± 14.9% predicted, P < 0.01); low FVC independently predicted lower Vo2peak after adjusting for relevant covariates. Among those with Vo2peak < 80% predicted (n = 204/260), 22.5% demonstrated a pulmonary mechanical contribution to exercise limitation (breathing reserve < 20%). Those with both low FVC and ventilatory inefficiency (minute ventilation/CO2 production > 40) had markedly reduced Vo2peak (61.5 ± 15.3% vs. 72.0 ± 14.9% predicted, P < 0.01) and a higher prevalence of pulmonary mechanical limit compared with patients with normal FVC and efficient ventilation (36.1% vs. 4.8%). In conclusion, abnormal FVC is common in young patients after the Fontan procedure and is independently associated with reduced exercise capacity. A large subset has a pathologically low breathing reserve, consistent with a pulmonary mechanical contribution to exercise limitation.


Asunto(s)
Prueba de Esfuerzo/estadística & datos numéricos , Ejercicio Físico , Procedimiento de Fontan/efectos adversos , Trastornos Respiratorios/etiología , Trastornos Respiratorios/fisiopatología , Espirometría/estadística & datos numéricos , Adolescente , Niño , Tolerancia al Ejercicio , Femenino , Humanos , Masculino , Prevalencia , Trastornos Respiratorios/diagnóstico , Resultado del Tratamiento , Estados Unidos
14.
Eur Respir J ; 43(5): 1316-25, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24177003

RESUMEN

Respiratory influences are major confounders when evaluating central haemodynamics during exercise. We studied four different methods to assess mean pulmonary artery pressure (mPAP) and pulmonary capillary wedge pressure (PCWP) in cases of respiratory swings. Central haemodynamics were measured simultaneously with oesophageal pressure during exercise in 30 chronic obstructive pulmonary disease (COPD) patients. mPAP and PCWP were assessed at the end of expiration, averaged over the respiratory cycle and corrected for the right atrial pressure (RAP) waveform estimated intrathoracic pressure, and compared with the transmural pressures. Bland-Altman analyses showed the best agreement of mPAP averaged over the respiratory cycle (bias (limits of agreement) 2.5 (-6.0-11.8) mmHg) and when corrected with the nadir of RAP (-3.6 (-11.2-3.9) mmHg). Measuring mPAP at the end of expiration (10.3 (0.5-20.3) mmHg) and mPAP corrected for the RAP swing (-9.3 (-19.8-2.1) mmHg) resulted in lower levels of agreement. The respiratory swings in mPAP and PCWP were similar (r(2)=0.82, slope ± se 0.95 ± 0.1). Central haemodynamics measured at the end of expiration leads to an overestimation of intravascular pressures in exercising COPD patients. Good measurement can be acquired even when oesopghageal pressure is omitted, by averaging pressures over the respiratory cycle or using the RAP waveform to correct for intrathoracic pressure. Assessment of the pulmonary gradient is unaffected by respiratory swings.


Asunto(s)
Ejercicio Físico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Presión Esfenoidal Pulmonar , Trastornos Respiratorios/complicaciones , Anciano , Femenino , Volumen Espiratorio Forzado , Hemodinámica , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Presión , Arteria Pulmonar/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Reproducibilidad de los Resultados , Respiración , Trastornos Respiratorios/fisiopatología , Factores de Tiempo
16.
Circ Heart Fail ; 17(5): e011227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572639

RESUMEN

BACKGROUND: This study aims to assess the impact of sotatercept on exercise tolerance, exercise capacity, and right ventricular function in pulmonary arterial hypertension. METHODS: SPECTRA (Sotatercept Phase 2 Exploratory Clinical Trial in PAH) was a phase 2a, single-arm, open-label, multicenter exploratory study that evaluated the effects of sotatercept by invasive cardiopulmonary exercise testing in participants with pulmonary arterial hypertension and World Health Organization functional class III on combination background therapy. The primary end point was the change in peak oxygen uptake from baseline to week 24. Cardiac magnetic resonance imaging was performed to assess right ventricular function. RESULTS: Among the 21 participants completing 24 weeks of treatment, there was a significant improvement from baseline in peak oxygen uptake, with a mean change of 102.74 mL/min ([95% CIs, 27.72-177.76]; P=0.0097). Sotatercept demonstrated improvements in secondary end points, including resting and peak exercise hemodynamics, and 6-minute walk distance versus baseline measures. Cardiac magnetic resonance imaging showed improvements from baseline at week 24 in right ventricular function. CONCLUSIONS: The clinical efficacy and safety of sotatercept demonstrated in the SPECTRA study emphasize the potential of this therapy as a new treatment option for patients with pulmonary arterial hypertension. Improvements in right ventricular structure and function underscore the potential for sotatercept as a disease-modifying agent with reverse-remodeling capabilities. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03738150.


Asunto(s)
Tolerancia al Ejercicio , Hipertensión Arterial Pulmonar , Función Ventricular Derecha , Humanos , Tolerancia al Ejercicio/efectos de los fármacos , Masculino , Femenino , Función Ventricular Derecha/efectos de los fármacos , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Adulto , Resultado del Tratamiento , Prueba de Esfuerzo , Proteínas Recombinantes de Fusión/uso terapéutico , Anciano , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Consumo de Oxígeno/efectos de los fármacos , Prueba de Paso , Receptores de Activinas Tipo II/uso terapéutico , Recuperación de la Función
17.
Sci Rep ; 14(1): 2513, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291116

RESUMEN

Autonomic symptom questionnaires are frequently used to assess dysautonomia. It is unknown whether subjective dysautonomia obtained from autonomic questionnaires correlates with objective dysautonomia measured by quantitative autonomic testing. The objective of our study was to determine correlations between subjective and objective measures of dysautonomia. This was a retrospective cross-sectional study conducted at Brigham and Women's Faulkner Hospital Autonomic Laboratory between 2017 and 2023 evaluating the patients who completed autonomic testing. Analyses included validated autonomic questionnaires [Survey of Autonomic Symptoms (SAS), Composite Autonomic Symptom Score 31 (Compass-31)] and standardized autonomic tests (Valsalva maneuver, deep breathing, sudomotor, and tilt test). The autonomic testing results were graded by a Quantitative scale for grading of cardiovascular reflexes, sudomotor tests and skin biopsies (QASAT), and Composite Autonomic Severity Score (CASS). Autonomic testing, QASAT, CASS, and SAS were obtained in 2627 patients, and Compass-31 in 564 patients. The correlation was strong between subjective instruments (SAS vs. Compass-31, r = 0.74, p < 0.001) and between objective instruments (QASAT vs. CASS, r = 0.81, p < 0.001). There were no correlations between SAS and QASAT nor between Compass-31 and CASS. There continued to be no correlations between subjective and objective instruments for selected diagnoses (post-acute sequelae of COVID-19, n = 61; postural tachycardia syndrome, 211; peripheral autonomic neuropathy, 463; myalgic encephalomyelitis/chronic fatigue syndrome, 95; preload failure, 120; post-treatment Lyme disease syndrome, 163; hypermobile Ehlers-Danlos syndrome, 213; neurogenic orthostatic hypotension, 86; diabetes type II, 71, mast cell activation syndrome, 172; hereditary alpha tryptasemia, 45). The lack of correlation between subjective and objective instruments highlights the limitations of the commonly used questionnaires with some patients overestimating and some underestimating true autonomic deficit. The diagnosis-independent subjective-objective mismatch further signifies the unmet need for reliable screening surveys. Patients who overestimate the symptom burden may represent a population with idiosyncratic autonomic-like symptomatology, which needs further study. At this time, the use of autonomic questionnaires as a replacement of autonomic testing cannot be recommended.


Asunto(s)
Ácido Penicilánico/análogos & derivados , Síndrome de Taquicardia Postural Ortostática , Humanos , Femenino , Estudios Retrospectivos , Estudios Transversales , Encuestas y Cuestionarios
18.
Eur J Prev Cardiol ; 31(2): 252-262, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37798122

RESUMEN

AIMS: To leverage deep learning on the resting 12-lead electrocardiogram (ECG) to estimate peak oxygen consumption (V˙O2peak) without cardiopulmonary exercise testing (CPET). METHODS AND RESULTS: V ˙ O 2 peak estimation models were developed in 1891 individuals undergoing CPET at Massachusetts General Hospital (age 45 ± 19 years, 38% female) and validated in a separate test set (MGH Test, n = 448) and external sample (BWH Test, n = 1076). Three penalized linear models were compared: (i) age, sex, and body mass index ('Basic'), (ii) Basic plus standard ECG measurements ('Basic + ECG Parameters'), and (iii) basic plus 320 deep learning-derived ECG variables instead of ECG measurements ('Deep ECG-V˙O2'). Associations between estimated V˙O2peak and incident disease were assessed using proportional hazards models within 84 718 primary care patients without CPET. Inference ECGs preceded CPET by 7 days (median, interquartile range 27-0 days). Among models, Deep ECG-V˙O2 was most accurate in MGH Test [r = 0.845, 95% confidence interval (CI) 0.817-0.870; mean absolute error (MAE) 5.84, 95% CI 5.39-6.29] and BWH Test (r = 0.552, 95% CI 0.509-0.592, MAE 6.49, 95% CI 6.21-6.67). Deep ECG-V˙O2 also outperformed the Wasserman, Jones, and FRIEND reference equations (P < 0.01 for comparisons of correlation). Performance was higher in BWH Test when individuals with heart failure (HF) were excluded (r = 0.628, 95% CI 0.567-0.682; MAE 5.97, 95% CI 5.57-6.37). Deep ECG-V˙O2 estimated V˙O2peak <14 mL/kg/min was associated with increased risks of incident atrial fibrillation [hazard ratio 1.36 (95% CI 1.21-1.54)], myocardial infarction [1.21 (1.02-1.45)], HF [1.67 (1.49-1.88)], and death [1.84 (1.68-2.03)]. CONCLUSION: Deep learning-enabled analysis of the resting 12-lead ECG can estimate exercise capacity (V˙O2peak) at scale to enable efficient cardiovascular risk stratification.


Researchers here present data describing a method of estimating exercise capacity from the resting electrocardiogram. Electrocardiogram estimation of exercise capacity was accurate and was found to predict the onset of the wide range of cardiovascular diseases including heart attacks, heart failure, arrhythmia, and death.This approach offers the ability to estimate exercise capacity without dedicated exercise testing and may enable efficient risk stratification of cardiac patients at scale.


Asunto(s)
Electrocardiografía , Insuficiencia Cardíaca , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Pronóstico , Prueba de Esfuerzo/métodos , Consumo de Oxígeno
20.
PLoS One ; 18(9): e0291364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37698999

RESUMEN

INTRODUCTION: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem chronic disease estimated to affect 836,000-2.5 million individuals in the United States. Persons with ME/CFS have a substantial reduction in their ability to engage in pre-illness levels of activity. Multiple symptoms include profound fatigue, post-exertional malaise, unrefreshing sleep, cognitive impairment, orthostatic intolerance, pain, and other symptoms persisting for more than 6 months. Diagnosis is challenging due to fluctuating and complex symptoms. ME/CFS Common Data Elements (CDEs) were identified in the National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) Common Data Element Repository. This study reviewed ME/CFS CDEs item content. METHODS: Inclusion criteria for CDEs (measures recommended for ME/CFS) analysis: 1) assesses symptoms; 2) developed for adults; 3) appropriate for patient reported outcome measure (PROM); 4) does not use visual or pictographic responses. Team members independently reviewed CDEs item content using the World Health Organization International Classification of Functioning, Disability and Health (ICF) framework to link meaningful concepts. RESULTS: 119 ME/CFS CDEs (measures) were reviewed and 38 met inclusion criteria, yielding 944 items linked to 1503 ICF meaningful concepts. Most concepts linked to ICF Body Functions component (b-codes; n = 1107, 73.65%) as follows: Fatiguability (n = 220, 14.64%), Energy Level (n = 166, 11.04%), Sleep Functions (n = 137, 9.12%), Emotional Functions (n = 131, 8.72%) and Pain (n = 120, 7.98%). Activities and Participation concepts (d codes) accounted for a smaller percentage of codes (n = 385, 25.62%). Most d codes were linked to the Mobility category (n = 69, 4.59%) and few items linked to Environmental Factors (e codes; n = 11, 0.73%). DISCUSSION: Relatively few items assess the impact of ME/CFS symptoms on Activities and Participation. Findings support development of ME/CFS-specific PROMs, including items that assess activity limitations and participation restrictions. Development of psychometrically-sound, symptom-based item banks administered as computerized adaptive tests can provide robust assessments to assist primary care providers in the diagnosis and care of patients with ME/CFS.


Asunto(s)
Disfunción Cognitiva , Síndrome de Fatiga Crónica , Adulto , Humanos , Síndrome de Fatiga Crónica/diagnóstico , Elementos de Datos Comunes , Fatiga , Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA