Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lett Appl Microbiol ; 74(6): 924-931, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35239229

RESUMEN

We studied the disinfection efficacy of boron-doped electrodes on Escherichia coli-contaminated water-based solutions in three different electrolytes, physiological solution (NaCl), phosphate buffer (PB), and phosphate buffer saline (PBS). The effect of the electrochemical oxidation treatment on the bacteria viability was studied by drop and spread plate cultivation methods, and supported by optical density measurements. We have found that bacterial suspensions in NaCl and PBS underwent a total inactivation of all viable bacteria within 10 min of the electrochemical treatment. By contrast, experiments performed in the PB showed a relatively minor decrease of viability by two orders of magnitude after 2 h of the treatment, which is almost comparable with the untreated control. The enhanced bacterial inactivation was assigned to reactive chlorine species, capable of penetrating the bacterial cytoplasmic membrane and killing bacteria from within.


Asunto(s)
Boro , Escherichia coli K12 , Boro/química , Boro/farmacología , Electrodos , Electrólitos/farmacología , Escherichia coli , Oxidación-Reducción , Fosfatos/farmacología , Cloruro de Sodio/farmacología
2.
Sensors (Basel) ; 21(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450831

RESUMEN

A nanocrystalline diamond (NCD) layer is used as an active (sensing) part of a conductivity gas sensor. The properties of the sensor with an NCD with H-termination (response and time characteristic of resistance change) are measured by the same equipment with a similar setup and compared with commercial sensors, a conductivity sensor with a metal oxide (MOX) active material (resistance change), and an infrared pyroelectric sensor (output voltage change) in this study. The deposited layer structure is characterized and analyzed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Electrical properties (resistance change for conductivity sensors and output voltage change for the IR pyroelectric sensor) are examined for two types of gases, oxidizing (NO2) and reducing (NH3). The parameters of the tested sensors are compared and critically evaluated. Subsequently, differences in the gas sensing principles of these conductivity sensors, namely H-terminated NCD and SnO2, are described.

3.
Bioelectrochemistry ; 158: 108691, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38574451

RESUMEN

We present a novel application of a nanocrystalline boron-doped diamond electrode (B-NCDE) for the construction of an electrochemical DNA biosensor based on double-stranded DNA (dsDNA) for various bioanalytical applications. Surface characterization of the transducer surface (prior and after the fabrication of negatively charged O-terminated surface - O-B-NCDE) was performed by scanning electron microscopy (SEM), Raman spectroscopy, and linear sweep voltammetry (LSV) that was further used for the voltammetric determination, scan rate dependence investigation, and repeatability examination of dsDNA electrochemical oxidation at the O-B-NCDE. The fabrication of a dsDNA/O-B-NCDE biosensor via electrostatic adsorption of dsDNA involved a thorough optimization process of deposition potential (Edep), deposition time (tdep), and optimal saturation concentration (cg(satur)) with optimal values of 0.3 V, 3 min, and 10 mg/mL. The bioanalytical applicability of the fabricated dsDNA/O-B-NCDE biosensor was verified by examining the nature of the interaction between dsDNA and five selected DNA intercalators - namely thioridazine hydrochloride (TR), trimipramine maleate (TRIM), levomepromazine maleate (LEV), imipramine hydrochloride (IMI), and prochlorperazine maleate (PER) - where intercalation was proven for all of the five tested compounds. Moreover, the proposed novel bioanalytical test offers the possibility to selectively distinguish between the phenothiazine representatives (TR, LEV, and PER) and representatives of tricyclic antidepressants group (TRIM and IMI).


Asunto(s)
Técnicas Biosensibles , Boro , ADN , Diamante , Electrodos , Técnicas Biosensibles/métodos , ADN/química , ADN/análisis , Diamante/química , Boro/química , Técnicas Electroquímicas/métodos , Nanopartículas/química
4.
ACS Appl Mater Interfaces ; 15(28): 34206-34214, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37394733

RESUMEN

Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.

5.
Front Plant Sci ; 13: 1045225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570933

RESUMEN

Introduction: Biological control of root diseases of lucerne (Medicago sativa L.) has potential benefits for stand performance but this remains unsupported by evidence from practical field studies. Methods: In field experiments at three sites our objectives were to determine the effect of Pythium oligandrum, as spring, autumn and intensive regime treatments on (i) lucerne plant density and root traits development, and (ii) forage yield and forage traits. Lucerne stands were managed under two or three treatments: non-treated control and P. oligandrum applied at two intensities of application under four-cut utilization. Results and discussion: Under relatively dry conditions (annual mean 10°C and <500 mm precipitation) lucerne dry matter yield was significantly reduced by 6%, which could be related to mechanisms of inappropriate stimulation and disturbance of the balance between auxins and ethylene. Under annual precipitation of >500 mm, positive impacts on stand height or fine root mass were observed for the autumn and intensive treatments where positive root response was visible only in alluvial soil. However, these changes did not result in higher yield and probably more applications per year will be needed for significant forage yield improvement. This study highlights the limits of field-scale biological control in which the potential of P. oligandrum for lucerne productivity improvement was realised only under a humid environment or deep alluvial soils, where higher root disease infestation may also be expected.

6.
Colloids Surf B Biointerfaces ; 177: 130-136, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716698

RESUMEN

Cell-based impedance spectroscopy is a promising label-free method for electrical monitoring of cell activity. Here we present a diamond-based impedance sensor with built-in gold interdigitated electrodes (IDT) as a promising platform for simultaneous electrical and optical monitoring of adipose tissue-derived stem cells (ASCs). The impedance spectra were collected in a wide frequency range (from 100 Hz to 50 kHz) for 90 h of cell cultivation in chambers designed for static cultivation. Absolute impedance spectra were analyzed in terms of measured frequencies and cell properties monitored by a high-resolution digital camera. The control commercially-available impedance system, based on gold electrodes exposed to the cultivation media, and also our specially developed sensor with gold electrodes built into a diamond thin film detected three phases of cell growth, namely the phase of cell attachment and spreading, the phase of cell proliferation, and the stationary phase without significant changes in cell number. These results were confirmed by simultaneous live cell imaging. The design of the sensing electrode is discussed, pointing out its enhanced sensitivity for a certain case. The diamond-based sensor appeared to be more sensitive for detecting the cell-substrate interaction in the first phase of cell growth, while the control system was more sensitive in the second phase of cell growth.


Asunto(s)
Tejido Adiposo/citología , Diamante/química , Impedancia Eléctrica , Nanopartículas/química , Células Madre/citología , Células Cultivadas , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA