Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 225(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234874

RESUMEN

Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.


Asunto(s)
Motivación , Ballenas , Animales , Tamaño Corporal , Natación
3.
Med Hypotheses ; 122: 82-88, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30593430

RESUMEN

The prevalence of adult and childhood obesity are increasing. Most of the human newborn's body fat accumulates in the last half of intrauterine life. Fat in the fetus was thought to be mostly synthesized from glucose, but now it is commonly accepted that the bulk of it is the product of placental transfer of maternal fatty acids. Transported fatty acids originate in maternal plasma "free" fatty acids, fatty acids hydrolyzed from maternal plasma triglycerides, and the poly-unsaturated fatty acid component of maternal phospholipids. Glucose remains an important precursor of alpha-glycerol phosphate, to which most transported fatty acids are eventually esterified. Maternal plasma lipids are elevated in late pregnancy and even more in obese and diabetic pregnant women. This accelerates the placental transport of fatty acids. The hypothesis presented in this paper rests on the observations that the exponential increase in fat tissue in the human embryo's body occurs in time to parallel the increase of lipids in the mother's blood and depends on the chemical affinity of the transcription factor PPAR gamma to fatty acids and on fatty acid stimulation of adipocyte generation from precursor cells. The hypothesis asserts that transported maternal fatty acids activate the transcription factors in the fetus and initiate conversion of the mesenchymal stem cells into adipocytes. In obese and diabetic mothers, the higher plasma lipids facilitate increased placental fatty acid transfer. This will increase adipocyte generation and, through this, the prevalence of babies with increased fat cell size and number. Babies born with increased adipose tissue cellularity will have greater probability of growing up to become obese adolescents and adults. These newborns, whose obesity is hyperplastic as well as hypertrophic, as adults will have difficulty losing weight through diet and exercise or will regain the lost weight more quickly than others without these characteristics. Accordingly, increased placental fatty acid transfer and accelerated adipocyte generation may explain not only neonatal obesity, but some aspects of the adult obesity epidemic also. It is therefore recommended that prevention of fetal fat cell hyperplasia, by lowering maternal plasma lipids in mid and late pregnancy, should be attempted in pregnancies at risk for macrosomia.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Obesidad/etiología , Obesidad Infantil/etiología , Adulto , Diferenciación Celular , Ácidos Grasos Insaturados/metabolismo , Femenino , Macrosomía Fetal , Humanos , Hidrólisis , Hiperplasia , Recién Nacido , Lípidos/química , Intercambio Materno-Fetal , Obesidad/metabolismo , PPAR gamma/metabolismo , Obesidad Infantil/metabolismo , Fosfolípidos/química , Placenta , Embarazo , Complicaciones del Embarazo , Triglicéridos/metabolismo
4.
R Soc Open Sci ; 6(10): 191104, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31824717

RESUMEN

Humpback whales (Megaptera novaeangliae) have exceptionally long pectorals (i.e. flippers) that aid in shallow water navigation, rapid acceleration and increased manoeuvrability. The use of pectorals to herd or manipulate prey has been hypothesized since the 1930s. We combined new technology and a unique viewing platform to document the additional use of pectorals to aggregate prey during foraging events. Here, we provide a description of 'pectoral herding' and explore the conditions that may promote this innovative foraging behaviour. Specifically, we analysed aerial videos and photographic sequences to assess the function of pectorals during feeding events near salmon hatchery release sites in Southeast Alaska (2016-2018). We observed the use of solo bubble-nets to initially corral prey, followed by calculated movements to establish a secondary boundary with the pectorals-further condensing prey and increasing foraging efficiency. We found three ways in which humpback whales use pectorals to herd prey: (i) create a physical barrier to prevent evasion, (ii) cause water motion to guide prey towards the mouth, and (iii) position the ventral side to reflect light and alter prey movement. Our findings suggest that behavioural plasticity may aid foraging in changing environments and shifts in prey availability. Further study would clarify if 'pectoral herding' is used as a principal foraging tool by the broader humpback whale population and the conditions that promote its use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA