Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 298(6): 101985, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483450

RESUMEN

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Asunto(s)
Proteínas de Escherichia coli/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Proteínas Periplasmáticas/química , Sitios de Unión , Lectina de Unión a Manosa de la Vía del Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Subunidades de Proteína
2.
PLoS Pathog ; 15(12): e1008232, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860690

RESUMEN

Ecotin is a serine protease inhibitor produced by hundreds of microbial species, including pathogens. Here we show, that ecotin orthologs from Escherichia coli, Yersinia pestis, Pseudomonas aeruginosa and Leishmania major are potent inhibitors of MASP-1 and MASP-2, the two key activator proteases of the complement lectin pathway. Factor D is the key activator protease of another complement activation route, the alternative pathway. We show that ecotin inhibits MASP-3, which is the sole factor D activator in resting human blood. In pathway-specific ELISA tests, we found that all ecotin orthologs are potent lectin pathway inhibitors, and at high concentration, they block the alternative pathway as well. In flow cytometry experiments, we compared the extent of complement-mediated opsonization and lysis of wild-type and ecotin-knockout variants of two E. coli strains carrying different surface lipopolysaccharides. We show, that endogenous ecotin provides significant protections against these microbicidal activities for both bacteria. By using pathway specific complement inhibitors, we detected classical-, lectin- and alternative pathway-driven complement attack from normal serum, with the relative contributions of the activation routes depending on the lipopolysaccharide type. Moreover, in cell proliferation experiments we observed an additional, complement-unrelated antimicrobial activity exerted by heat-inactivated serum. While ecotin-knockout cells are highly vulnerable to these activities, endogenous ecotin of wild-type bacteria provides complete protection against the lectin pathway-related and the complement-unrelated attack, and partial protection against the alternative pathway-related damage. In all, ecotin emerges as a potent, versatile self-defense tool that blocks multiple antimicrobial activities of the serum. These findings suggest that ecotin might be a relevant antimicrobial drug target.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento/fisiología , Proteínas del Sistema Complemento/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Proteasas/sangre , Activación de Complemento/fisiología , Escherichia coli/metabolismo , Humanos , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Yersinia pestis/metabolismo
3.
J Biol Chem ; 294(20): 8227-8237, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30952698

RESUMEN

The lectin pathway (LP) of the complement system is an important antimicrobial defense mechanism, but it also contributes significantly to ischemia reperfusion injury (IRI) associated with myocardial infarct, stroke, and several other clinical conditions. Mannan-binding lectin-associated serine proteinase 2 (MASP-2) is essential for LP activation, and therefore, it is a potential drug target. We have previously developed the first two generations of MASP-2 inhibitors by in vitro evolution of two unrelated canonical serine proteinase inhibitors. These inhibitors were selective LP inhibitors, but their nonhuman origin rendered them suboptimal lead molecules for drug development. Here, we present our third-generation MASP-2 inhibitors that were developed based on a human inhibitor scaffold. We subjected the second Kunitz domain of human tissue factor pathway inhibitor 1 (TFPI1 D2) to directed evolution using phage display to yield inhibitors against human and rat MASP-2. These novel TFPI1-based MASP-2 inhibitor (TFMI-2) variants are potent and selective LP inhibitors in both human and rat serum. Directed evolution of the first Kunitz domain of TFPI1 had already yielded the potent kallikrein inhibitor, Kalbitor® (ecallantide), which is an FDA-approved drug to treat acute attacks of hereditary angioedema. Like hereditary angioedema, acute IRI is also related to the uncontrolled activation of a specific plasma serine proteinase. Therefore, TFMI-2 variants are promising lead molecules for drug development against IRI.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Evolución Molecular Dirigida , Lipoproteínas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Inhibidores de Serina Proteinasa , Animales , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Péptidos/química , Ratas , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo
5.
J Immunol ; 196(2): 857-65, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26673137

RESUMEN

It had been thought that complement factor D (FD) is activated at the site of synthesis, and only FD lacking a propeptide is present in blood. The serum of mannose-binding lectin-associated serine protease (MASP)-1/3(-/-) mice contains pro-FD and has markedly reduced alternative pathway activity. It was suggested that MASP-1 and MASP-3 directly activate pro-FD; however, other experiments contradicted this view. We decided to clarify the involvement of MASPs in pro-FD activation in normal, as opposed to deficient, human plasma and serum. Human pro-FD containing an APPRGR propeptide was produced in insect cells. We measured its activation kinetics using purified active MASP-1, MASP-2, MASP-3, as well as thrombin. We found all these enzymes to be efficient activators, whereas MASP proenzymes lacked such activity. Pro-FD cleavage in serum or plasma was quantified by a novel assay using fluorescently labeled pro-FD. Labeled pro-FD was processed with t1/2s of ∼ 3 and 5 h in serum and plasma, respectively, showing that proteolytic activity capable of activating pro-FD exists in blood even in the absence of active coagulation enzymes. Our previously developed selective MASP-1 and MASP-2 inhibitors did not reduce pro-FD activation at reasonable concentration. In contrast, at very high concentration, the MASP-2 inhibitor, which is also a poor MASP-3 inhibitor, slowed down the activation. When recombinant MASPs were added to plasma, only MASP-3 could reduce the half-life of pro-FD. Combining our quantitative data, MASP-1 and MASP-2 can be ruled out as direct pro-FD activators in resting blood; however, active MASP-3 is a very likely physiological activator.


Asunto(s)
Vía Alternativa del Complemento/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Factor D del Complemento/inmunología , Inhibidores Enzimáticos/farmacología , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Espectrometría de Masas
6.
J Biol Chem ; 286(25): 22535-45, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21515688

RESUMEN

Human chymotrypsin C (CTRC) is a pancreatic protease that participates in the regulation of intestinal digestive enzyme activity. Other chymotrypsins and elastases are inactive on the regulatory sites cleaved by CTRC, suggesting that CTRC recognizes unique sequence patterns. To characterize the molecular determinants underlying CTRC specificity, we selected high affinity substrate-like small protein inhibitors against CTRC from a phage library displaying variants of SGPI-2, a natural chymotrypsin inhibitor from Schistocerca gregaria. On the basis of the sequence pattern selected, we designed eight inhibitor variants in which amino acid residues in the reactive loop at P1 (Met or Leu), P2' (Leu or Asp), and P4' (Glu, Asp, or Ala) were varied. Binding experiments with CTRC revealed that (i) inhibitors with Leu at P1 bind 10-fold stronger than those with P1 Met; (ii) Asp at P2' (versus Leu) decreases affinity but increases selectivity, and (iii) Glu or Asp at P4' (versus Ala) increase affinity 10-fold. The highest affinity SGPI-2 variant (K(D) 20 pm) bound to CTRC 575-fold tighter than the parent molecule. The most selective inhibitor variant exhibited a K(D) of 110 pm and a selectivity ranging from 225- to 112,664-fold against other human chymotrypsins and elastases. Homology modeling and mutagenesis identified a cluster of basic amino acid residues (Lys(51), Arg(56), and Arg(80)) on the surface of human CTRC that interact with the P4' acidic residue of the inhibitor. The acidic preference of CTRC at P4' is unique among pancreatic proteases and might contribute to the high specificity of CTRC-mediated digestive enzyme regulation.


Asunto(s)
Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Biblioteca de Péptidos , Péptidos/metabolismo , Péptidos/farmacología , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Quimotripsina/química , Quimotripsina/genética , Análisis Mutacional de ADN , Evolución Molecular Dirigida , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
7.
J Mol Biol ; 431(3): 557-575, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30543823

RESUMEN

Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.


Asunto(s)
Inhibidores de Serina Proteinasa/química , Sitios de Unión , Rastreo Diferencial de Calorimetría/métodos , Quimotripsina/química , Dicroismo Circular/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Serina Proteasas/química , Tripsina/química
8.
Sci Rep ; 6: 31877, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535802

RESUMEN

MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways.


Asunto(s)
Factor D del Complemento/metabolismo , Vía Alternativa del Complemento , Lectina de Unión a Manosa de la Vía del Complemento , Precursores Enzimáticos/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Factor D del Complemento/genética , Precursores Enzimáticos/genética , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA