Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
2.
Genes Dev ; 34(21-22): 1474-1492, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060136

RESUMEN

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Asunto(s)
Polaridad Celular/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Epigénesis Genética/genética , Macrófagos/citología , Factor de Transcripción STAT6/metabolismo , Activación Transcripcional/genética , Animales , Mapeo Cromosómico , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Humanos , Interleucina-4/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Dominios y Motivos de Interacción de Proteínas/genética , Factor de Transcripción STAT6/genética , Transcriptoma/genética
3.
Pflugers Arch ; 476(2): 179-196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989901

RESUMEN

Chronic kidney disease (CKD) is associated with anxiety; however, its exact mechanism is not well understood. Therefore, the aim of the present study was to assess the effect of moderate CKD on anxiety in rats. 5/6 nephrectomy was performed in male Wistar rats. 7 weeks after, anxiety-like behavior was assessed by elevated plus maze (EPM), open field (OF), and marble burying (MB) tests. At weeks 8 and 9, urinalysis was performed, and blood and amygdala samples were collected, respectively. In the amygdala, the gene expression of Avp and the gene and protein expression of Crh, Crhr1, and Crhr2 were analyzed. Furthermore, the plasma concentration of corticosterone, uremic toxins, and tryptophan metabolites was measured by UHPLC-MS/MS. Laboratory tests confirmed the development of CKD. In the CKD group, the closed arm time increased; the central time and the total number of entries decreased in the EPM. There was a reduction in rearing, central distance and time in the OF, and fewer interactions with marbles were detected during MB. CKD evoked an upregulation of gene expression of Crh, Crhr1, and Crhr2, but not Avp, in the amygdala. However, there was no alteration in protein expression. In the CKD group, plasma concentrations of p-cresyl-sulfate, indoxyl-sulfate, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid, picolinic acid, and quinolinic acid increased. However, the levels of tryptophan, tryptamine, 5-hydroxytryptophan, serotonin, and tyrosine decreased. In conclusion, moderate CKD evoked anxiety-like behavior that might be mediated by the accumulation of uremic toxins and metabolites of the kynurenine pathway, but the contribution of the amygdalar CRH system to the development of anxiety seems to be negligible at this stage.


Asunto(s)
Insuficiencia Renal Crónica , Triptófano , Ratas , Masculino , Animales , Triptófano/metabolismo , Quinurenina/metabolismo , Ratas Wistar , Tóxinas Urémicas , Espectrometría de Masas en Tándem , Amígdala del Cerebelo/metabolismo , Insuficiencia Renal Crónica/metabolismo , Ansiedad
4.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38451121

RESUMEN

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Asunto(s)
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000077

RESUMEN

Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.


Asunto(s)
Electrones , Alquilación , Alcoholes/química , Catálisis , Hidrocarburos Aromáticos/química
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542368

RESUMEN

The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 µmol/4 µL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 µmol/4 µL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.


Asunto(s)
Ácido Quinurénico , Fármacos Neuroprotectores , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Fármacos Neuroprotectores/química , Prueba de Campo Abierto
7.
Molecules ; 29(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275023

RESUMEN

The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells.


Asunto(s)
Antineoplásicos , Indoles , Humanos , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Relación Estructura-Actividad , Oxiquinolina/química , Oxiquinolina/farmacología , Metano/química , Metano/análogos & derivados , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales
8.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175622

RESUMEN

8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.


Asunto(s)
Naftoles , Oxiquinolina , Oxiquinolina/farmacología , Naftoles/química , Aminas/química , Aldehídos/química , Hidrógeno , Bases de Mannich/química
9.
Stem Cells ; 39(10): 1322-1334, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34058047

RESUMEN

Zbtb46 is a recently identified dendritic cell (DC)-specific transcription factor with poorly defined biology. Although Zbtb46 is highly expressed in conventional DCs, evidence also points to its presence in erythroid progenitors and endothelial cells suggesting that this factor might influence the early hematopoietic development. Here, we probe the effect of this transcription factor in embryonic stem cell (ESC)-derived blood cell progenitors using chemically inducible mouse cell lines. Unexpectedly, forced expression of this protein elicited a broad repressive effect at the early stage of ESC differentiation. Ectopic expression of Zbtb46 interfered with the mesoderm formation and cell proliferation was also negatively impacted. More importantly, reduced number of CD11b+ myeloid blood cells were generated from ESC-derived Flk1+ mesoderm cells in the presence of Zbtb46. Consistent with this finding, our gene expression profiling revealed that numerous myeloid and immune response related genes, including Irf8, exhibited lower expression in the Zbtb46-primed cells. Despite these repressive effects, however, Zbtb46 overexpression was associated with enhanced formation of erythroid blood cell colonies and increased adult hemoglobin (Hbb-b1) expression at the early phase of ESC differentiation. Moreover, elevated percent of CD105 (Endoglin) positive cells were detected in the Zbtb46-primed samples. In summary, our results support that Zbtb46 suppresses the ESC-derived myeloid development and diverts mesoderm cells toward erythroid developmental pathway. Moreover, our transcriptomic data provide a resource for exploration of the Zbtb46 regulatory network in ESC-derived progenitors.


Asunto(s)
Células Madre Embrionarias , Células Endoteliales , Animales , Células Sanguíneas , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Hematopoyesis/genética , Ratones
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077085

RESUMEN

The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett-Brown substituent were correlated.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Hidroxiquinolinas , Antineoplásicos/farmacología , Compuestos de Bencilideno , Citotoxinas , Doxorrubicina/farmacología , Humanos
11.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293186

RESUMEN

6-Hydroxyquinoline and 3-hydroxyisoquinoline as N-containing naphthol analogues were tested in modified Mannich reactions (mMr's). In the case of 6-hydroxyquinoline, the outcomes of the attempted Mannich reactions were strongly influenced by the amine components. Aminoalkylation of this substrate with reagents 1-naphthaldehyde and N-benzylmethylamine led to the isolation of a diol regarded as a stabilised water adduct of an ortho-quinone methide (o-QM), of which formation can be ascribed to the presence of a hydroxide ion in a relatively higher concentration generated by the bulky and basic amine component with decreased nucleophilicity. The classical Mannich base was isolated as a single product when the amine component was replaced for morpholine, featuring nucleophilicity rather than basic character under the applied reaction conditions. Starting from the isomer substrate 3-hydroxyisoquinoline, independently on the nucleophile (methanol or morpholine) besides the formation of the classical Mannich base, the nucleophilic attack at position one of the heterocyclic substrate was also observed. The DFT analysis of the acceptor molecular orbitals of the potential electrophilic components and the thermodynamics of the assumed-possible transformations demonstrated that this regioselective addition is a feasible process on the investigated heterocyclic skeleton. DFT modelling studies also suggest that besides the steric bulk, the orbital-controlled electronic properties of the aryl group, originating from the aldehyde components, have a strong influence on the ratios and the NMR-monitored interconversions of the C-1-substituted 3-hydroxyisoquinolines and the classical Mannich bases formed in multistep reaction sequences. On the basis of the DFT analysis of the thermodynamics of alternative pathways, a reaction mechanism was proposed for the rationalization of these characteristic substrate-controlled interconversions.


Asunto(s)
Bases de Mannich , Naftoles , Bases de Mannich/química , Metanol , Agua/química , Morfolinas , Aldehídos
12.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806158

RESUMEN

KYNAs, a compound with endogenous neuroprotective functions and an indole that is a building block of many biologically active compounds, such as a variety of neurotransmitters, are reacted in a transformation building upon Mannich bases. The reaction yields triarylmethane derivatives containing two biologically potent skeletons, and it may contribute to the synthesis of new, specialised neuroprotective compounds. The synthesis has been investigated via two procedures and the results were compared to those of previous studies. A possible alternative reaction route through acid catalysis has been established.


Asunto(s)
Indoles , Bases de Mannich , Catálisis , Bases de Mannich/química
13.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163002

RESUMEN

Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.


Asunto(s)
Amidas/farmacología , Antiinflamatorios/farmacología , Histonas/metabolismo , Ácido Quinurénico/farmacología , Lipopolisacáridos/efectos adversos , Microglía/citología , Amidas/química , Animales , Animales Recién Nacidos , Antiinflamatorios/química , Células Cultivadas , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Ácido Quinurénico/análogos & derivados , Masculino , Metilación/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Embarazo , Ratas , Receptores CCR1/metabolismo
14.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614037

RESUMEN

Multidrug resistance (MDR) in cancer is one of the major obstacles of chemotherapy. We have recently identified a series of 8-hydroxyquinoline Mannich base derivatives with MDR-selective toxicity, however with limited solubility. In this work, a novel 5-nitro-8-hydroxyquinoline-proline hybrid and its Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes with excellent aqueous solubility were developed, characterized, and tested against sensitive and MDR cells. Complex formation of the ligand with essential metal ions was also investigated using UV-visible, circular dichroism, 1H NMR (Zn(II)), and electron paramagnetic resonance (Cu(II)) spectroscopic methods. Formation of mono and bis complexes was found in all cases with versatile coordination modes, while tris complexes were also formed with Fe(II) and Fe(III) ions, revealing the metal binding affinity of the ligand at pH 7.4: Cu(II) > Zn(II) > Fe(II) > Fe(III). The ligand and its Rh(III) complex displayed enhanced cytotoxicity against the resistant MES-SA/Dx5 and Colo320 human cancer cell lines compared to their chemosensitive counterparts. Both organometallic complexes possess high stability in solution, however the Ru(II) complex has lower chloride ion affinity and slower ligand exchange processes, along with the readiness to lose the arene ring that is likely connected to its inactivity.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Compuestos Organometálicos , Rutenio , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Prolina , Solubilidad , Ligandos , Resistencia a Múltiples Medicamentos , Compuestos Férricos , Rutenio/química , Antineoplásicos/farmacología , Antineoplásicos/química , Resistencia a Antineoplásicos , Agua/química , Iones , Compuestos Ferrosos , Compuestos Organometálicos/química
15.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769362

RESUMEN

Kynurenic acid (KYNA) is an endogenous neuroprotective agent of increasing importance. Several derivatives have already been synthesized, bearing an abundance of functional groups attached to the main skeleton in different positions. Several of these compounds have already been tested in biological evaluations, with several of them targeting the same receptors and biological effects as KYNA. However, these modified compounds build upon the unmodified KYNA skeleton leaving a possible route for the synthesis of new, potentially neuroprotective derivatives with heteroatom-containing ring systems. The aim of this review is to summarize the syntheses of KYNA derivatives with altered skeletons and to pinpoint an appealing transformation for future medicinal lead molecules.


Asunto(s)
Hidroxiquinolinas/química , Ácido Quinurénico/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Humanos , Enfermedades Neurodegenerativas/patología
16.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681939

RESUMEN

Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.


Asunto(s)
Aminoácidos/química , Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Complejos de Coordinación/farmacología , Oxiquinolina/química , Rodio/química , Rutenio/química , Antineoplásicos/química , Apoptosis , Proliferación Celular , Neoplasias del Colon/patología , Complejos de Coordinación/química , Humanos , Células Tumorales Cultivadas
17.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525680

RESUMEN

Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 µM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.


Asunto(s)
Hipocampo/fisiología , Canales de Potasio KCNQ/efectos de los fármacos , Ácido Quinurénico/farmacología , Animales , Apamina/farmacología , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Indoles/farmacología , Ácido Quinurénico/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp , Péptidos/farmacología , Piridinas/farmacología , Ratas
18.
Proc Natl Acad Sci U S A ; 114(40): 10725-10730, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923935

RESUMEN

Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Neoplasias Pulmonares/secundario , Melanoma Experimental/patología , Células Mieloides/patología , Receptores X Retinoide/fisiología , Transcripción Genética , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Células Cultivadas , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Molecules ; 25(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093108

RESUMEN

The application of kynurenic acid (KYNA) as an electron-rich aromatic system in the modified Mannich reaction has been examined. The extension possibility of the reaction was tested by using amines occurring in a number of bioactive products, such as morpholine, piperidine, or N-methylpiperazine and aldehydes of markedly different reactivities, like formaldehyde and benzaldehyde. The influence of substituents attached to position 3 on the aminoalkylation was also investigated. Thus, reactions of 3-carbamoyl-substituted precursors with tertiary amine containing side-chains were also tested to afford new KYNA derivatives with two potential cationic centers. By means of NMR spectroscopic measurements, supported by DFT calculations, the dominant tautomer form of KYNA derivatives was also determined.


Asunto(s)
Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/química , Ácido Quinurénico/síntesis química
20.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481689

RESUMEN

The synthesis of new phenanthr[9,10-e][1,3]oxazines was achieved by the direct coupling of 9-phenanthrol with cyclic imines in the modified aza-Friedel-Crafts reaction followed by the ring closure of the resulting bifunctional aminophenanthrols with formaldehyde. Aminophenanthrol-type Mannich bases were synthesised and transformed to phenanthr[9,10-e][1,3]oxazines via [4 + 2] cycloaddition. Detailed NMR structural analyses of the new polyheterocycles as well as conformational studies including Density Functional Theory (DFT) modelling were performed. The relative stability of ortho-quinone methides (o-QMs) was calculated, the geometries obtained were compared with the experimentally determined NMR structures, and thereby, the regioselectivity of the reactions has been assigned.


Asunto(s)
Indolquinonas/química , Catálisis , Formaldehído/química , Iminas/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA