Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 1066, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518642

RESUMEN

Structural defects in primary cilia have robust effects in diverse tissues and systems. However, how disorders of ciliary length lead to functional outcomes are unknown. We examined the functional role of a ciliary length control mechanism of FBW7-mediated destruction of NDE1, in mesenchymal stem cell (MSC) differentiation. We show that FBW7 functions as a master regulator of both negative (NDE1) and positive (TALPID3) regulators of ciliogenesis, with an overall positive net effect on primary cilia formation, MSC differentiation to osteoblasts, and bone architecture. Deletion of Fbxw7 suppresses ciliation, Hedgehog activity, and differentiation, which are partially rescued in Fbxw7/Nde1-null cells. We also show that NDE1, despite suppressing ciliogenesis, promotes MSC differentiation by increasing the activity of the Hedgehog pathway by direct binding and enhancing GLI2 activity in a cilia-independent manner. We propose that FBW7 controls a protein-protein interaction network coupling ciliary structure and function, which is essential for stem cell differentiation.


Asunto(s)
Cilios/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Diferenciación Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Transducción de Señal
2.
Sci Signal ; 14(703): eabc5944, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609896

RESUMEN

The parathyroid hormone (PTH) type 1 receptor (PTHR) is a class B G protein­coupled receptor (GPCR) that regulates mineral ion, vitamin D, and bone homeostasis. Activation of the PTHR by PTH induces both transient cell surface and sustained endosomal cAMP production. To address whether the spatial (location) or temporal (duration) dimension of PTHR-induced cAMP encodes distinct biological outcomes, we engineered a biased PTHR ligand (PTH7d) that elicits cAMP production at the plasma membrane but not at endosomes. PTH7d stabilized a unique active PTHR conformation that mediated sustained cAMP signaling at the plasma membrane due to impaired ß-arrestin coupling to the receptor. Experiments in cells and mice revealed that sustained cAMP production by cell surface PTHR failed to mimic the pharmacological effects of sustained endosomal cAMP production on the abundance of the rate-limiting hydroxylase catalyzing the formation of active vitamin D, as well as increases in circulating active vitamin D and Ca2+ and in bone formation in mice. Thus, similar amounts of cAMP generated by PTHR for similar lengths of time in different cellular locations, plasma membrane and endosomes, mediate distinct physiological responses. These results unveil subcellular signaling location as a means to achieve specificity in PTHR-mediated biological outcomes and raise the prospect of rational drug design based upon spatiotemporal manipulation of GPCR signaling.


Asunto(s)
Hormona Paratiroidea , Receptores de Hormona Paratiroidea , AMP Cíclico
3.
J Bone Miner Res ; 35(1): 143-154, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498905

RESUMEN

Calcium and its putative receptor (CaSR) control skeletal development by pacing chondrocyte differentiation and mediating osteoblast (OB) function during endochondral bone formation-an essential process recapitulated during fracture repair. Here, we delineated the role of the CaSR in mediating transition of callus chondrocytes into the OB lineage and subsequent bone formation at fracture sites and explored targeting CaSRs pharmacologically to enhance fracture repair. In chondrocytes cultured from soft calluses at a closed, unfixed fracture site, extracellular [Ca2+ ] and the allosteric CaSR agonist (NPS-R568) promoted terminal differentiation of resident cells and the attainment of an osteoblastic phenotype. Knockout (KO) of the Casr gene in chondrocytes lengthened the chondrogenic phase of fracture repair by increasing cell proliferation in soft calluses but retarded subsequent osteogenic activity in hard calluses. Tracing growth plate (GP) and callus chondrocytes that express Rosa26-tdTomato showed reduced chondrocyte transition into OBs (by >80%) in the spongiosa of the metaphysis and in hard calluses. In addition, KO of the Casr gene specifically in mature OBs suppressed osteogenic activity and mineralizing function in bony calluses. Importantly, in experiments using PTH (1-34) to enhance fracture healing, co-injection of NPS-R568 not only normalized the hypercalcemic side effects of intermittent PTH (1-34) treatment in mice but also produced synergistic osteoanabolic effects in calluses. These data indicate a functional role of CaSR in mediating chondrogenesis and osteogenesis in the fracture callus and the potential of CaSR agonism to facilitate fracture repair. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Condrocitos , Curación de Fractura , Animales , Callo Óseo , Ratones , Ratones Noqueados , Osteoblastos , Osteogénesis , Receptores Sensibles al Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA