Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731509

RESUMEN

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Asunto(s)
Cápsulas , Composición de Medicamentos , Aceites Volátiles , Proteínas de Plantas , Polisacáridos , Salvia , Semillas , Vicia faba , Polisacáridos/química , Semillas/química , Vicia faba/química , Composición de Medicamentos/métodos , Aceites Volátiles/química , Proteínas de Plantas/química , Salvia/química , Cápsulas/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
2.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744826

RESUMEN

The growing number of people at high risk of cardiovascular disease development contributed to both changes in diets by consumers and the reformulation of food products by food producers. Cardiovascular diseases are caused by the i.a. consumption of meat that contains animal fat rich in saturated fatty acids (SFA). The use of fat substitutes in meat seems to be a promising tool for the reduction of cardiovascular disease occurrence. In the presented study, beef fat was replaced at 0 (CO), 25 (S-25%), 50 (S-50%), 75 (S-75%), and 100% (S-100%) by a fat substitute in a form of a lyophilized hydrogel emulsion enriched with encapsulated açai oil. The chemical (TBARS, volatile compound profile, fatty acid profile, pH), and physical (TPA, consumer rating, L*a*b* color, cooking loss) analyses were performed on raw and grilled burgers subjected to storage at cold conditions (4 °C) in days 0 and 7. Burgers formulated with hydrogels had a higher content of polyunsaturated fatty acids (PUFAs) of about 32% (p < 0.05) and reduced SFAs by 22%. Reformulation of the burger resulted in lower nutritional indices of the atherogenicity index (AI) (0.8 for CO, 0.3 for S-100%, p < 0.05) and thrombogenicity index (TI) (1.8 for CO, 0.6 for S-100%, p < 0.05), as well as led to an increased h/H ratio (1.3 for CO, 3.9 for S-100%, p < 0.05). Furthermore the application of freeze-dried hydrogels reduced cooking loss. Moreover, consumers did not observe significant differences (p < 0.05) between the control and S-25% and S-50% burgers. Thus, the use of lyophilized hydrogels formulated with konjac flour and sodium alginate and enriched with encapsulated acai oil can be successfully applied as a fat substitute in beef burgers.


Asunto(s)
Enfermedades Cardiovasculares , Sustitutos de Grasa , Productos de la Carne , Animales , Bovinos , Culinaria , Sustitutos de Grasa/análisis , Sustitutos de Grasa/química , Ácidos Grasos/análisis , Humanos , Hidrogeles/química , Productos de la Carne/análisis
3.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458595

RESUMEN

This study evaluates the effects of using a fat substitute in beef burgers composed of a hydrogel emulsion enriched with encapsulated safflower oil and açai extract. The influences of the fat substitute on the chemical (TBARS, fatty acids, and volatile compounds profile) and physical (weight loss, cooking loss, water-holding capacity, color, and texture analyses) characteristics of the burgers were analyzed after 0, 4 and 8 days of storage at 4 ± 1 °C. The obtained results were compared with control groups (20 g of tallow or 8 g of safflower oil). The fat substitute used improved burger parameters such as chewiness, hardness and the a* color parameter remained unchanged over storage time. The addition of açai extract slowed the oxidation rate of polyunsaturated fatty acids and reduced the changes in the volatile compounds profile during the storage of burgers. The utilization of a fat substitute enriched the burgers with polyunsaturated fatty acids and lowered the atherogenic index (0.49 raw, 0.58 grilled burger) and the thrombogenicity index (0.8 raw, 1.09 grilled burger), while it increased the hypocholesterolemic/hypercholesterolemic ratio (2.59 raw, 2.09 grilled burger) of consumed meat. Thus, the application of the presented fat substitute in the form of a hydrogel enriched with açai berry extract extended the shelf life of the final product and contributed to the creation of a healthier meat product that met the nutritional recommendations.


Asunto(s)
Sustitutos de Grasa , Productos de la Carne , Animales , Bovinos , Emulsiones , Sustitutos de Grasa/química , Ácidos Grasos Insaturados/análisis , Hidrogeles/química , Productos de la Carne/análisis , Extractos Vegetales/química , Aceite de Cártamo
4.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011404

RESUMEN

Marinating is one of the most common methods of pre-processing meat. Appropriate selection of marinade ingredients can influence the physicochemical properties of the meat and can reduce the level of polycyclic aromatic hydrocarbons (PAHs) in the final product. The effects of the inclusion of natural plant extracts such as bay leaf (BL), black pepper (BP), turmeric (TU), jalapeno pepper (JP) and tamarind paste (TA) in marinades on the physicochemical properties of grilled pork neck were studied. The addition of spice extracts to marinades increased the proportion of colour components L* and b*. The use of TU, TA, JP, MX and C marinades lowered the hardness and pH of the meat. The highest phenolic compound levels were observed in the case of the mixture of all extracts (MX) and JP marinades, and the highest total antioxidant capacity was exhibited by the BL and MX marinades. The highest PAH content was recorded in the CON marinade (Σ12PAH 98.48 ± 0.81 µg/kg) and the lowest in the JP marinade (4.76 ± 0.08 µg/kg), which had the strongest, statistically significant reducing effect (95% reduction) on PAH levels. Analysis of correlation coefficients showed a relationship between the total antioxidant capacity of the marinades and the PAH content in grilled pork.


Asunto(s)
Culinaria , Extractos Vegetales/química , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/química , Carne de Cerdo/análisis , Antioxidantes/análisis , Antioxidantes/química , Fraccionamiento Químico , Fenómenos Químicos , Concentración de Iones de Hidrógeno , Fenoles/análisis , Fitoquímicos , Extractos Vegetales/análisis , Análisis Espectral , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
5.
J Food Sci Technol ; 56(5): 2628-2638, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168145

RESUMEN

Oxidative stability of lipid fractions extracted from sponge-fat cakes enriched with green tea extracts and synthetic antioxidant (BHA) directly after baking and after 28 days of storage was investigated. This was achieved by the determination of peroxide (PV), p-anisidine (p-AnV) and acid values (AV), and using Rancimat test or differential scanning calorimetry method, respectively. The results showed that the lipid fractions extracted from sponge-fat cakes containing the addition of BHA (0.02%) and green tea extract at concentrations of 1% exhibited a greater resistance to oxidation than those from cakes without additives. AV values were the lowest for lipids extracted from sponge-fat cakes enriched with 1% green tea extract up to the end of storage. The incorporation of BHA and green tea extract (1%) into cakes caused a gradual increase of PV and p-AnV values during 21 days of sample storage. The values of these parameters increased significantly for samples without any additives, especially in regard to PV. What is more, thermal analysis showed that samples enriched with 1% green tea extract and with BHA were characterized by higher onset temperature (tON), activation energy, and induction time (τ) than samples without any additives, especially during 21 days of storage. The increase of green tea extract concentration to 1% in cookies reduced L* (from 63.85 to 51.15) and b* (from 34.64 to 29.11) values, while a* value showed an increase from 8.43 to 11.17.

6.
J Food Sci ; 89(8): 4997-5015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980959

RESUMEN

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).


Asunto(s)
Emulsionantes , Aceites Volátiles , Emulsionantes/química , Aceites Volátiles/química , Proteínas de Guisantes/química , Solubilidad , Tamaño de la Partícula , Liofilización , Gelatina/química , Cápsulas , Aceite de Soja/química
7.
Int J Biol Macromol ; 274(Pt 1): 133295, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914398

RESUMEN

The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.


Asunto(s)
Antioxidantes , Composición de Medicamentos , Emulsiones , Polifenoles , Almidón , , Emulsiones/química , Polifenoles/química , Almidón/química , Té/química , Antioxidantes/química , Aceites de Plantas/química , Avena/química , Goma Arábiga/química , Cápsulas , Viscosidad , Polisacáridos
8.
Foods ; 13(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201099

RESUMEN

In recent years, interest in functional foods and meat analogues has increased. This study investigated the effect of the type of vegetable fat and ingredients with antioxidant activity on the properties of a meat analogue based on textured pea protein. The possibility of using acai oil (AO), canola oil (CO) and olive oil (OO); propolis extract (P); buckwheat honey (H); and jalapeno pepper extract (JE) was investigated. The texture, colour and selected chemical parameters of plant-based burgers were analysed. Results showed that burgers from control group had the lowest hardness, while burgers with honey had the highest. The highest MUFA content was found in samples with olive oil. Samples with honey were characterised by the highest content of polyphenols, flavonoids and antioxidant capacity. The highest overall acceptability was observed in burgers from the JE-CO group. Therefore, it is possible to use selected ingredients with antioxidant activity in the recipe for a plant-based burger with high product acceptability.

9.
Foods ; 12(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231792

RESUMEN

Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09-59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55-11.20%). The smallest particle sizes, which did not exceed 6 µm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58-50.27, HR = 1.45-2.01).

10.
Foods ; 11(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35804801

RESUMEN

The objective of this study was to analyze the impact of partial replacement of beef tallow with sunflower, canola, linseed, olive oil and milk fat on physical properties, oxidation stability, fatty acid profile and PAHs (polycyclic aromatic hydrocarbons) content of beef burgers. Studies have shown a strong relationship between the fatty acid profile and the PAH content (especially of the heavy PAHs). The partial replacement of beef tallow with oils and milk fat (MF) contributed to a change in the fatty acid profile and a reduction in the hardness of the burgers. The highest PAH content was found in samples with canola oil (CO), which had the highest levels of monounsaturated fatty acids (MUFA), and in the control group (CON) without fat substitution, which had the highest levels of saturated fatty acids (SFA) and trans conformations. Substitution of animal fat with vegetable oils contributed to a change in the color of the burgers' surface, as there was a statistically significant increase in the L* color component and a decrease in the a* component. The burgers with canola oil (CO) and linseed oil (LO) were the most susceptible to oxidation, whereas the burgers with reduced fat content (CON_LOW FAT) were the most stable in terms of oxidation, where the malondialdehyde (MDA) content was 32.8% lower compared with the control group (CON). The studies confirm that partial replacement of beef tallow with vegetable oils and milk fat and reduction in fat content in burgers to be grilled can be an effective way to change their fatty acid profile and reduce the cyclization reaction of organic compounds leading to the formation of PAH. Correlation coefficient analysis showed that there is a relationship between fatty acid profile and the presence of selected PAHs in grilled beef burgers. The results of this study indicate that replacing beef tallow with vegetable oils is a promising approach in designing meat products with controlled PAH content.

11.
Foods ; 11(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407043

RESUMEN

Many people are increasingly interested in a vegetarian or vegan diet. Looking at the research and the available options in the market, there are two generations of products based on typical proteins, such as soy or gluten, and newer generation proteins, such as peas or faba beans, or even proteins based on previously used feed proteins. In the review, we present the characteristics of several proteins that can be consumed as alternatives to first-generation proteins used in vegan foods. In the following part of the work, we describe the research in which novel protein sources were used in terms of the product they are used for. The paper describes protein sources such as cereal proteins, oilseeds proteins coming from the cakes after oil pressing, and novel sources such as algae, insects, and fungus for use in meat analog products. Technological processes that can make non-animal proteins similar to meat are also discussed, as well as the challenges faced by technologists working in the field of vegan products.

12.
Foods ; 11(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35010232

RESUMEN

There are many reasons why consumers and food producers are looking for alternatives to meat and meat products, which includes the following: health, environmental or ethical aspects. This study reviews recent scientific reports on meat analogues. The scope of the review includes the following: formulation and nutritional value; health safety and legal regulations; manufacturing and processing technologies including the latest developments in this area; product availability on the food market; and consumer attitudes towards meat analogues. The analysis of the literature data identified technological challenges, particularly in improving consumer acceptability of meat analogues. Among the risks and limitations associated with the production of meat analogues, the following were identified: contamination from raw materials and the risk of harmful by-products due to intensive processing; legal issues of product nomenclature; and consumer attitudes towards substituting meat with plant-based alternatives. The need for further research in this area, particularly on the nutritional value and food safety of meat analogues, was demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA