Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38407286

RESUMEN

Optical coherence microscopy (OCM) visualizes nuclei in live, unlabeled cells. As most cells are uninucleated, the number of nuclei in embryos may serve as a proxy of the cell number, providing important information on developmental status of the embryo. Importantly, no other non-invasive method currently allows for the cell number count in compacted embryos. We addressed the question of whether OCM, by providing the number of nuclei in compacted mouse embryos, may help evaluate embryo quality. We subjected compacted embryonic Day 3 (E3.0: 72 h after onset of insemination) mouse embryos to OCM scanning and correlated nuclei number and developmental potential. Implantation was assessed using an outgrowth assay (in vitro model meant to reflect embryonic ability to implant in vivo). Embryos with more cells at E3.0 (>18 cells) were more likely to reach the blastocyst stage by E4.0 and E5.0 (P ≪ 0.001) and initiate hatching by E5.0 (P < 0.05) than those with fewer cells (<12 cells). Moreover, the number of cells at E3.0 strongly correlated with the total number of cells in E4.0 and E5.0 embryos (ρ = 0.71, P ≪ 0.001 and ρ = 0.61, P ≪ 0.001, respectively), also when only E4.0 and E5.0 blastocysts were considered (ρ = 0.58, P ≪ 0.001 and ρ = 0.56, P ≪ 0.001, respectively). Additionally, we observed a strong correlation between the number of cells at E3.0 and the number of trophectoderm cells in E4.0 and E5.0 blastocysts (ρ = 0.59, P ≪ 0.001 and ρ = 0.57, P ≪ 0.001, respectively). Importantly, embryos that had more cells at E3.0 (>18 cells) were also more likely to implant in vitro than their counterparts with fewer cells (<12 cells; P ≪ 0.001). Finally, we tested the safety of OCM imaging, demonstrating that OCM scanning affected neither the amount of reactive oxygen species nor mitochondrial activity in the embryos. OCM also did not hinder their preimplantation development, ability to implant in vitro, or to develop to term after transfer to recipient females. Our data indicate that OCM imaging provides important information on embryo quality. As the method seems to be safe for embryos, it could be a valuable addition to the current repertoire of embryo evaluation methods. However, our study was conducted only on mouse embryos, so the proposed protocol would require optimization in order to be applied in other species.


Asunto(s)
Implantación del Embrión , Microscopía , Femenino , Animales , Ratones , Blastocisto , Núcleo Celular , Desarrollo Embrionario , Técnicas de Cultivo de Embriones/métodos
2.
Theriogenology ; 222: 10-21, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603966

RESUMEN

Producing chimaeras constitutes the most reliable method of verifying the pluripotency of newly established cells. Moreover, forming chimaeras by injecting genetically modified embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) into the embryo is part of the procedure for generating transgenic mice, which are used for understanding gene function. Conventional methods for generating transgenic mice, including the breeding of chimaeras and tetraploid complementation, are time-consuming and cost-inefficient, with significant limitations that hinder their effectiveness and widespread applications. In the present study, we modified the traditional method of chimaera generation to significantly speed up this process by generating mice exclusively derived from ESCs. This study aimed to assess whether fully ESC-derived mice could be obtained by modulating fibroblast growth factor 4 (FGF4) levels in the culture medium and changing the direction of cell differentiation in the chimaeric embryo. We found that exogenous FGF4 directs all host blastomeres to the primitive endoderm fate, but does not affect the localisation of ESCs in the epiblast of the chimaeric embryos. Consequently, all FGF4-treated chimaeric embryos contained an epiblast composed exclusively of ESCs, and following transfer into recipient mice, these embryos developed into fully ESC-derived newborns. Collectively, this simple approach could accelerate the generation of ESC-derived animals and thus optimise ESC-mediated transgenesis and the verification of cell pluripotency. Compared to traditional methods, it could speed up functional studies by several weeks and significantly reduce costs related to maintaining and breeding chimaeras. Moreover, since the effect of stimulating the FGF signalling pathway is universal across different animal species, our approach can be applied not only to rodents but also to other animals, offering its utility beyond laboratory settings.


Asunto(s)
Quimera , Factor 4 de Crecimiento de Fibroblastos , Animales , Factor 4 de Crecimiento de Fibroblastos/genética , Ratones , Células Madre Embrionarias , Ratones Transgénicos , Embrión de Mamíferos , Diferenciación Celular
3.
Nat Commun ; 15(1): 5331, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909026

RESUMEN

Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.


Asunto(s)
Gametogénesis , Ratones Noqueados , Poliadenilación , ARN Mensajero , Espermatogénesis , Animales , Femenino , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ratones , Espermatogénesis/genética , Gametogénesis/genética , Oogénesis/genética , Polinucleotido Adenililtransferasa/metabolismo , Polinucleotido Adenililtransferasa/genética , Oocitos/metabolismo , Fertilidad/genética , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA