Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Microvasc Res ; 122: 131-135, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30144413

RESUMEN

The blood-brain barrier consists of a tightly sealed monolayer of endothelial cells being vital in maintaining a stable intracerebral microenvironment. The barrier is receptive to leakage upon exposure to environmental factors, like hypoxia, and its disruption has been suggested as a constituent in the pathophysiology of both neurological and psychiatric disorders. The schizophrenia associated ZEB1 gene encodes a transcription factor susceptible to transcriptional control by a hypoxia induced factor, HIF1A, known to be implicated in blood-brain barrier dysfunction. However, whether ZEB1 is also implicated in maintaining blood-brain barrier integrity upon hypoxia is unknown. Here we assessed Hif1a, Zo1 and Zeb1 mRNA expression and ZO1 protein abundancy in a mimetic system of the in vivo blood-brain barrier comprising mouse brain endothelial cells subjected to the norm- and proven hypoxic conditions. Despite that, Hif1a mRNA expression was significantly increased, clearly indicating that the oxygen-deprived environment introduced a hypoxia response in the cells, we found no hypoxia-induced changes in neither ZO1 abundancy nor in the expression of Zo1 and Zeb1 mRNA. However, independent of hypoxia status, we found that Zeb1 and Zo1 mRNA expression is highly correlated. Further studies are warranted that investigate the implication of the ZEB1/ZO1 axis in blood-brain barrier maintenance under different physiological conditions.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Microambiente Celular , Células Endoteliales/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
2.
Fluids Barriers CNS ; 19(1): 16, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177109

RESUMEN

BACKGROUND: In severe acute pancreatitis (AP) the CNS is affected manifesting in neurological symptoms. Earlier research from our laboratory showed blood-brain barrier (BBB) permeability elevation in a taurocholate-induced AP model. Here we aimed to further explore BBB changes in AP using a different, non-invasive in vivo model induced by L-ornithine. Our goal was also to identify whether L-ornithine, a cationic amino acid, has a direct effect on brain endothelial cells in vitro contributing to the observed BBB changes. METHODS: AP was induced in rats by the intraperitoneal administration of L-ornithine-HCl. Vessel permeability and the gene expression of the primary transporter of L-ornithine, cationic amino acid transporter-1 (Cat-1) in the brain cortex, pancreas, liver and lung were determined. Ultrastructural changes were followed by transmission electron microscopy. The direct effect of L-ornithine was tested on primary rat brain endothelial cells and a triple co-culture model of the BBB. Viability and barrier integrity, including permeability and TEER, nitrogen monoxide (NO) and reactive oxygen species (ROS) production and NF-κB translocation were measured. Fluorescent staining for claudin-5, occludin, ZO-1, ß-catenin, cell adhesion molecules Icam-1 and Vcam-1 and mitochondria was performed. Cell surface charge was measured by laser Doppler velocimetry. RESULTS: In the L-ornithine-induced AP model vessel permeability for fluorescein and Cat-1 expression levels were elevated in the brain cortex and pancreas. On the ultrastructural level surface glycocalyx and mitochondrial damage, tight junction and basal membrane alterations, and glial edema were observed. L-ornithine decreased cell impedance and elevated the BBB model permeability in vitro. Discontinuity in the surface glycocalyx labeling and immunostaining of junctional proteins, cytoplasmic redistribution of ZO-1 and ß-catenin, and elevation of Vcam-1 expression were measured. ROS production was increased and mitochondrial network was damaged without NF-κB, NO production or mitochondrial membrane potential alterations. Similar ultrastructural changes were seen in L-ornithine treated brain endothelial cells as in vivo. The basal negative zeta potential of brain endothelial cells became more positive after L-ornithine treatment. CONCLUSION: We demonstrated BBB damage in the L-ornithine-induced rat AP model suggesting a general, AP model independent effect. L-ornithine induced oxidative stress, decreased barrier integrity and altered BBB morphology in a culture BBB model. These data suggest a direct effect of the cationic L-ornithine on brain endothelium. Endothelial surface glycocalyx injury was revealed both in vivo and in vitro, as an additional novel component of the BBB-related pathological changes in AP.


Asunto(s)
Barrera Hematoencefálica , Pancreatitis , Enfermedad Aguda , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio , Ornitina/metabolismo , Ornitina/farmacología , Pancreatitis/metabolismo , Ratas , Uniones Estrechas/metabolismo
3.
FEBS J ; 289(4): 1062-1079, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626084

RESUMEN

Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and ß-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Animales , Células Cultivadas , Ratas , Ratas Sprague-Dawley
4.
Pharmaceutics ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34575559

RESUMEN

Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.

5.
Curr Pharm Des ; 26(13): 1405-1416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32048959

RESUMEN

The vesicular transport machinery regulates numerous essential functions in cells such as cell polarity, signaling pathways, and the transport of receptors and their cargoes. From a pharmaceutical perspective, vesicular transport offers avenues to facilitate the uptake of therapeutic agents into cells and across cellular barriers. In order to improve receptor-mediated transcytosis of biologics across the blood-brain barrier and into the diseased brain, a detailed understanding of intracellular transport mechanisms is essential. The vesicular transport machinery is a highly complex network and involves an array of protein complexes, cytosolic adaptor proteins, and the subcellular structures of the endo-lysosomal system. The endo-lysosomal system includes several types of vesicular entities such as early, late, and recycling endosomes, exosomes, ectosomes, retromer-coated vesicles, lysosomes, trans-endothelial channels, and tubules. While extensive research has been done on the trafficking system in many cell types, little is known about vesicular trafficking in brain endothelial cells. Consequently, assumptions on the transport system in endothelial cells are based on findings in polarised epithelial cells, although recent studies have highlighted differences in the endothelial system. This review highlights aspects of the vesicular trafficking machinery in brain endothelial cells, including recent findings, limitations, and opportunities for further studies.


Asunto(s)
Encéfalo , Células Endoteliales , Barrera Hematoencefálica , Endosomas/metabolismo , Transporte de Proteínas
6.
Nutrients ; 12(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081105

RESUMEN

The effect of food components on brain growth and development has attracted increasing attention. Milk has been shown to contain peptides that deliver important signals to the brains of neonates and infants. In order to reach the brain, milk peptides have to resist proteolytic degradation in the gastrointestinal tract, cross the gastrointestinal barrier and later cross the highly selective blood-brain barrier (BBB). To investigate this, we purified and characterized endogenous peptides from bovine milk and investigated their apical to basal transport by using human intestinal Caco-2 cells and primary porcine brain endothelial cell monolayer models. Among 192 characterized milk peptides, only the αS1-casein peptide 185PIGSENSEKTTMPLW199, and especially fragments of this peptide processed during the transport, could cross both the intestinal barrier and the BBB cell monolayer models. This peptide was also shown to resist simulated gastrointestinal digestion. This study demonstrates that a milk derived peptide can cross the major biological barriers in vitro and potentially reach the brain, where it may deliver physiological signals.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Caseínas/metabolismo , Mucosa Intestinal/metabolismo , Leche/química , Péptidos/metabolismo , Animales , Transporte Biológico , Encéfalo/citología , Células CACO-2 , Bovinos , Células Endoteliales/metabolismo , Humanos , Porcinos
7.
Sci Rep ; 9(1): 611, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679749

RESUMEN

SorLA and Sortilin are multifunctional receptors involved in endocytosis and intracellular sorting of different and unrelated ligands. SorLA has recently attracted much attention as a novel strong risk gene for Alzheimer's disease, and much effort is currently being put into understanding the underlying molecular mechanism. Trafficking of SorLA and Sortilin are mediated by interacting with AP-1, AP-2, GGA 1-3 and the retromer complex. Although these cytosolic adaptor proteins all bind to both SorLA and Sortilin, a large fraction of intracellular Sortilin and SorLA are located in different subcellular vesicles. This indicates that unknown specialised adaptor proteins targeting SorLA for trafficking are yet to be discovered. We have identified HSPA12A as a new adaptor protein that, among Vps10p-D receptors, selectively binds to SorLA in an ADP/ATP dependent manner. This is the first described substrate of HSPA12A, and we demonstrate that the binding, which affects both endocytic speed and subcellular localisation of SorLA, is mediated by specific acidic residues in the cytosolic domain of SorLA. The identification of the relatively unknown HSPA12A as a SorLA specific interaction partner could lead to novel insight into the molecular mechanism of SorLA, and re-emphasises the role of heat shock proteins in neurodegenerative diseases.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas de Transporte de Membrana/química , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
8.
Fluids Barriers CNS ; 16(1): 14, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31142333

RESUMEN

BACKGROUND: Brain endothelial cell-based in vitro models are among the most versatile tools in blood-brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood-brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. METHODS: For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. RESULTS: We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. CONCLUSIONS: Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood-brain barrier models. This knowledge is valuable for planning the optimal route across the blood-brain barrier and advancing drug delivery to the brain.


Asunto(s)
Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Lisosomas/metabolismo , Animales , Encéfalo/irrigación sanguínea , Línea Celular , Humanos , Ratones , Porcinos
9.
Neural Regen Res ; 18(3): 549-550, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36018172
10.
Mol Neurobiol ; 55(11): 8522-8537, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29560581

RESUMEN

Receptor- and adsorptive-mediated transport through brain endothelial cells (BEC) of the blood-brain barrier (BBB) involves a complex array of subcellular vesicular structures, the endo-lysosomal system. It consists of several types of vesicles, such as early, recycling, and late endosomes, retromer-positive structures, and lysosomes. Since this system is important for receptor-mediated transcytosis of drugs across brain capillaries, our aim was to characterise the endo-lysosomal system in BEC with emphasis on their interactions with astrocytes. We used primary porcine BEC in monoculture and in co-culture with primary rat astrocytes. The presence of astrocytes changed the intraendothelial vesicular network and significantly impacted vesicular number, morphology, and distribution. Additionally, gene set enrichment analysis revealed that 60 genes associated with vesicular trafficking showed altered expression in co-cultured BEC. Cytosolic proteins involved in subcellular trafficking were investigated to mark transport routes, such as RAB25 for transcytosis. Strikingly, the adaptor protein called AP1-µ1B, important for basolateral sorting in epithelial cells, was not expressed in BEC. Altogether, our data pin-point unique features of BEC trafficking network, essentially mapping the endo-lysosomal system of in vitro BBB models. Consequently, our findings constitute a valuable basis for planning the optimal route across the BBB when advancing drug delivery to the brain.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Endosomas/metabolismo , Células Endoteliales/metabolismo , Lisosomas/metabolismo , Animales , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Ratas Wistar , Fracciones Subcelulares/metabolismo
11.
Front Mol Neurosci ; 11: 166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872378

RESUMEN

Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.

12.
J Vis Exp ; (127)2017 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-28994773

RESUMEN

The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm2, and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10-6 ± 0.13 10-6 cm sec-1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies of transport and intracellular trafficking.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Células Endoteliales/metabolismo , Animales , Células Endoteliales/citología , Porcinos
13.
Fluids Barriers CNS ; 12: 17, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26184769

RESUMEN

BACKGROUND: The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. METHODS: Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. RESULTS: The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. CONCLUSION: The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate alterations in lipid composition which may be linked to the partial protection against oxLDL toxicity.


Asunto(s)
Apolipoproteína B-100/metabolismo , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Lipoproteínas LDL/toxicidad , Animales , Apolipoproteína B-100/genética , Aterosclerosis/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fluidez de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Óxido Nítrico/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Front Mol Neurosci ; 8: 88, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834555

RESUMEN

Stress is well-known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognized in the development of neurodegenerative disorders, such as Alzheimer's disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3, and 21 days) were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occluding, and glucose transporter-1) and astroglia (GFAP). Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, 1-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5, and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes, cognitive and behavioral dysfunctions.

15.
PLoS One ; 9(7): e100152, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25033388

RESUMEN

BACKGROUND: Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. METHODOLOGY: Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and ß-catenin. Cell morphology was also examined by holographic phase imaging. PRINCIPAL FINDINGS: Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. CONCLUSION: These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.


Asunto(s)
Antipirina/análogos & derivados , Barrera Hematoencefálica/fisiología , Endotelio Vascular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Piruvaldehído/farmacología , Uniones Estrechas/fisiología , Antipirina/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Claudina-5/metabolismo , Edaravona , Impedancia Eléctrica , Células Endoteliales/fisiología , Endotelio Vascular/citología , Endotelio Vascular/patología , Guanidinas/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Uniones Estrechas/efectos de los fármacos , beta Catenina/metabolismo
16.
Arch Med Res ; 45(8): 753-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25446614

RESUMEN

BACKGROUND AND AIMS: Elevated levels of reactive carbonyl species such as methylglyoxal triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Carbonyl stress is implicated in conditions and diseases like aging, diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Our aim was to examine the effects of methylglyoxal on human hCMEC/D3 brain endothelial cells and search for protective molecules to prevent endothelial damage. METHODS: Methylglyoxal-induced modification of albumin was tested in a cell-free assay. Endothelial cell viability was monitored by impedance measurement in real-time. The following compounds were tested in cell-free and viability assays: ß-alanine, all-trans-retinoic acid, aminoguanidine, ascorbic acid, L-carnosine, GW-3333, indapamide, piracetam, γ-tocopherol, U0126, verapamil. Barrier function of brain endothelial monolayers was characterized by permeability measurements and visualized by immunohistochemistry for ß-catenin. mRNA expression level of 60 selected blood-brain barrier-related genes in hCMEC/D3 cells was investigated by a custom Taqman gene array. RESULTS: Methylglyoxal treatment significantly elevated protein modification, exerted toxicity, reduced barrier integrity, increased permeability for markers FITC-dextran and albumin and caused higher production of reactive oxygen species in hCMEC/D3 endothelial cells. Changes in the mRNA expression of 30 genes coding tight junction proteins, transporters and enzymes were observed in methylglyoxal-treated hCMEC/D3 cells. From the tested 11 compounds only all-trans-retinoic acid, an antioxidant and antiglycation agent, U0126, a MAP/ERK kinase inhibitor and aminoguanidine attenuated methylglyoxal-induced damage in hCMEC/D3 cells. CONCLUSIONS: All-trans-retinoic acid and inhibition of the MAP/ERK signaling pathway may be protective in carbonyl stress induced brain endothelial damage.


Asunto(s)
Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Piruvaldehído/antagonistas & inhibidores , Piruvaldehído/metabolismo , Tretinoina/farmacología , Enfermedad de Alzheimer/metabolismo , Antioxidantes/farmacología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Butadienos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Guanidinas/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Nitrilos/farmacología , Piruvaldehído/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Uniones Estrechas/genética , beta Catenina/metabolismo
18.
J Alzheimers Dis ; 36(3): 487-501, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23645098

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß peptides (Aß) as perivascular deposits and senile plaques in the brain. The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and reduced risk in AD in several epidemiological trials; however the exact underlying molecular mechanism remains to be elucidated. The aim of the study was to test whether DHA can exert a direct protective effect on the elements of the neurovascular unit, such as neurons, glial cells, brain endothelial cells, and pericytes, treated with Aß42 (15 µM). A dose-dependent high cellular toxicity was found in viability assays in all cell types and on acute hippocampal slices after treatment with Aß42 small oligomers prepared in situ from an isopeptide precursor. The cell morphology also changed dramatically in all cell types. In brain endothelial cells, damaged barrier function and increased para- and transcellular permeability were observed after peptide treatment. The production of reactive oxygen species was elevated in pericytes and endothelial and glial cells. DHA (30 µM) significantly decreased the Aß42-induced toxic effects in all cell types measured by viability assays, and protected the barrier integrity and functions of brain endothelial cells. DHA also decreased the elevated rhodamine 123 accumulation in brain endothelial cells pre-treated with Aß42 indicating an effect on efflux pump activity. These results indicate for the first time that DHA can protect not only neurons but also the other elements of the neurovascular unit from the toxic effects of Aß42 and this effect may be beneficial in AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Ácidos Docosahexaenoicos/farmacología , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Prosencéfalo/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Prosencéfalo/metabolismo , Ratas , Ratas Wistar
19.
Eur J Pharm Biopharm ; 82(2): 340-51, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906709

RESUMEN

An accurate means of predicting blood-brain barrier (BBB) penetration and blood-brain partitioning of NCEs (new chemical entities) would fulfill a major need in pharmaceutical research. Currently, an industry-standard BBB drug penetration model is not available. Primary brain capillary endothelial cells, optionally co-cultured with astrocytes and/or pericytes, are the most valued models of BBB. For routine use, establishing and maintaining a co-culture system is too costly and labor intensive. Alternatively, non-cerebral cell lines such as MDCK-MDR1 are used, and most recently, the suitability of native and modified Caco-2 for predicting brain penetration has also come under investigation. This study provides comparative data on the morphology and functionality of the high integrity brain capillary endothelial BBB model (EPA: triple culture of brain capillary endothelial cells with pericytes and astrocytes) and the epithelial cell-based (native Caco-2, high P-glycoprotein expressing vinblastine-treated VB-Caco-2 and MDCK-MDR1) surrogate BBB models. Using a panel of 10 compounds VB-Caco-2 and MDCK-MDR1 cell lines show restrictive paracellular pathway and BBB-like selective passive permeability that makes them comparable to the rat brain BBB model, which gave correlation with the highest r(2) value with in vivo permeability data. In bidirectional assay, the VB-Caco-2 and the MDCK-MDR1 models identified more P-glycoprotein drug substrates than the rat brain BBB model. While the complexity and predictive value of the BBB model is the highest, for the screening of NCEs to determine whether they are efflux substrates or not, the VB-Caco-2 and the MDCK-MDR1 models may provide a simple and inexpensive tool.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Astrocitos/metabolismo , Transporte Biológico , Encéfalo/citología , Células CACO-2 , Línea Celular , Técnicas de Cocultivo , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Pericitos/metabolismo , Permeabilidad , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA