Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cardiothorac Vasc Anesth ; 37(7): 1110-1120, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37059638

RESUMEN

OBJECTIVES: Previous studies have described impaired platelet function after cardiopulmonary bypass (CPB). Whether this is still valid in contemporary cardiac surgery is unclear. This study aimed to quantify changes in function and number of platelets during CPB in a present-day cardiac surgery cohort. DESIGN: Prospective, controlled clinical study. SETTING: A single-center university hospital. PARTICIPANTS: Thirty-nine patients scheduled for coronary artery bypass graft surgery with CPB. INTERVENTIONS: Platelet function and numbers were measured at 6 timepoints in 39 patients during and after coronary artery bypass graft surgery; at baseline before anesthesia, at the end of CPB, after protamine administration, at intensive care unit (ICU) arrival, 3 hours after ICU arrival, and on the morning after surgery. MEASUREMENTS AND MAIN RESULTS: Platelet function was assessed with impedance aggregometry and flow cytometry. Platelet numbers are expressed as actual concentration and as numbers corrected for dilution using hemoglobin as a reference marker. There was no consistent impairment of platelet function during CPB with either impedance aggregometry or flow cytometry. After protamine administration, a decrease in platelet function was seen with impedance aggregometry and for some markers of activation with flow cytometry. Platelet function was restored 3 hours after arrival in the ICU. During CPB (85.0 ± 21 min), the number of circulating platelets corrected for dilution increased from 1.73 ± 0.42 × 109/g to 1.91 ± 0.51 × 109/g (p < 0.001). CONCLUSIONS: During cardiac surgery with moderate CPB times, platelet function was not impaired, and no consumption of circulating platelets could be detected. Administration of protamine transiently affected platelet function.


Asunto(s)
Agregación Plaquetaria , Protaminas , Humanos , Agregación Plaquetaria/fisiología , Puente Cardiopulmonar/efectos adversos , Estudios Prospectivos , Plaquetas/fisiología
2.
Platelets ; 33(6): 926-934, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35073813

RESUMEN

Studies of platelet function in surgical patients often involve both arterial and venous sampling. Possible effects of different sampling sites could be important, but have not been thoroughly investigated. We aimed to compare platelet function in arterial and venous blood samples using a novel flow cytometry protocol and impedance aggregometry. Arterial and venous blood was collected before anesthesia in 10 patients undergoing cardiac surgery of which nine was treated with acetylsalicylic acid until the day before surgery. Flow cytometry included simultaneous analysis of phosphatidylserine exposure, active conformation of the fibrinogen receptor (PAC-1 binding), α-granule and lysosomal release (P-selectin and LAMP-1 exposure) and mitochondrial membrane integrity. Platelets were activated with ADP or peptides activating thrombin receptors (PAR1-AP/PAR4-AP) or collagen receptor GPVI (CRP-XL). Leukocyte-platelet conjugates and P-selectin exposure were evaluated immediately in fixated samples. For impedance aggregometry (Multiplate®), ADP, arachidonic acid, collagen and PAR1-AP (TRAP) were used as activators. Using impedance aggregometry and in 27 out of 37 parameters studied with flow cytometry there was no significant difference between venous and arterial blood sampling. Arterial blood showed more PAC-1 positive platelets when activated with PAR1-AP or PAR4-AP and venous blood showed more monocyte-platelet and neutrophil-platelet conjugates and higher phosphatidylserine exposure with CRP-XL alone and combined with PAR1-AP or PAR4-AP. We found no differences using impedance aggregometry. In conclusion, testing of platelet function by flow cytometry and impedance aggregometry gave comparable results for most of the studied parameters in venous and arterial samples. Flow cytometry identified differences in PAC-1 binding when activated with PAR1-AP, exposure of phosphatidyl serine and monocyte/neutrophil-platelet conjugates, which might reflect differences in blood sampling technique or in flow conditions in this patient cohort with coronary artery disease. These differences might be considered when comparing data from different sample sites, but caution should be exercised if a different protocol is used or another patient group is studied.


Asunto(s)
Selectina-P , Activación Plaquetaria , Adenosina Difosfato/farmacología , Plaquetas/metabolismo , Citometría de Flujo , Humanos , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Agregación Plaquetaria , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo
3.
Platelets ; 32(1): 90-96, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31992110

RESUMEN

Heparin and protamine are fundamental in the management of anticoagulation during cardiac surgery. Excess protamine has been associated with increased bleeding. Interaction between protamine and platelet function has been demonstrated but the mechanism remains unclear. We examined the effect of protamine on platelet function in vitro using impedance aggregometry, flow cytometry, and thrombin generation. Platelets were exposed to protamine at final concentrations of 0, 20, 40, and 80 µg/mL, alone or together with adenosine diphosphate (ADP) or thrombin PAR1 receptor-activating peptide (TRAP). We found that in the absence of other activators, protamine (80 µg/mL) increased the proportion of platelets with active fibrinogen receptor (binding of PAC-1) from 3.6% to 97.0% (p < .001) measured with flow cytometry. Impedance aggregometry also increased slightly after exposure to protamine alone. When activated with ADP or TRAP protamine at 80 µg/mL reduced aggregation, from 73.8 ± 29.4 U to 46.9 ± 21.1 U (p < .001) with ADP and from 126.4 ± 16.1 U to 94.9 ± 23.7 U (p < .01) with TRAP. P-selectin exposure (a marker of alpha-granule release) measured by median fluorescence intensity (MFI) increased dose dependently with protamine alone, from 0.76 ± 0.20 (0 µg/mL) to 10.2 ± 3.1 (80 µg/mL), p < .001. Protamine 80 µg/mL by itself resulted in higher MFI (10.16 ± 3.09) than activation with ADP (2.2 ± 0.7, p < .001) or TRAP (5.7 ± 2.6, p < .01) without protamine. When protamine was combined with ADP or TRAP, there was a concentration-dependent increase in the alpha-granule release. In conclusion, protamine interacts with platelets in vitro having both a direct activating effect and impairment of secondary activation of aggregation by other agonists.


Asunto(s)
Adenosina Difosfato/metabolismo , Fibrinógeno/fisiología , Agregación Plaquetaria/fisiología , Protaminas/metabolismo , Receptores de Trombina/metabolismo , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad
5.
Eur Heart J Case Rep ; 5(2): ytaa523, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33594347

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) spreading from Wuhan, Hubei province in China, is an expanding global pandemic with significant morbidity and mortality. Even though respiratory failure is the cardinal form of severe COVID-19, concomitant cardiac involvement is common. Myocarditis is a challenging diagnosis due to heterogeneity of clinical presentation, ranging from mild symptoms to fatal arrhythmia and cardiogenic shock (CS). The aetiology is often viral and endomyocardial biopsy (EMB) is the gold standard for definite myocarditis. However, the diagnosis is often made on medical history, clinical presentation, magnetic resonance imaging, and blood tests. CASE SUMMARY: We present a 43-year-old man with mixed connective tissue disease treated with hydroxychloroquine who rapidly developed CS 4 days from symptom onset with fever and cough, showing positive polymerase chain reaction nasopharyngeal swab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. While computed tomography of the thorax was normal, high-sensitivity troponin T was elevated and electrocardiogram showed diffuse ST elevation and low voltage as signs of myocardial oedema. Echocardiography showed severe depression of left ventricular function. The myocardium recovered completely after a week with mechanical circulatory support (MCS). EMB was performed but could neither identify the virus in the cardiomyocytes, nor signs of inflammation. Still the most probable aetiology of CS in this case is myocarditis as a sole symptom of COVID-19. DISCUSSION: COVID-19 patients in need of hospitalization present commonly with respiratory manifestations. We present the first case of fulminant myocarditis rapidly progressing to CS in a COVID-19 patient without respiratory failure, successfully treated with inotropes and MCS.

6.
Clinics (Sao Paulo) ; 69(8): 535-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25141112

RESUMEN

OBJECTIVE: The purpose of this study was to examine the isovolumetric distribution kinetics of crystalloid fluid during cardiopulmonary bypass. METHODS: Ten patients undergoing coronary artery bypass grafting participated in this prospective observational study. The blood hemoglobin and the serum albumin and sodium concentrations were measured repeatedly during the distribution of priming solution (Ringer's acetate 1470 ml and mannitol 15% 200 ml) and initial cardioplegia. The rate of crystalloid fluid distribution was calculated based on 3-min Hb changes. The preoperative blood volume was extrapolated from the marked hemodilution occurring during the onset of cardiopulmonary bypass. Clinicaltrials.gov: NCT01115166. RESULTS: The distribution half-time of Ringer's acetate averaged 8 minutes, corresponding to a transcapillary escape rate of 0.38 ml/kg/min. The intravascular albumin mass increased by 5.4% according to mass balance calculations. The preoperative blood volume, as extrapolated from the drop in hemoglobin concentration by 32% (mean) at the beginning of cardiopulmonary bypass, was 0.6-1.2 L less than that estimated by anthropometric methods (p<0.02). The mass balance of sodium indicated a translocation from the intracellular to the extracellular fluid space in 8 of the 10 patients, with a median volume of 236 ml. CONCLUSIONS: The distribution half-time of Ringer's solution during isovolumetric cardiopulmonary bypass was 8 minutes, which is the same as for crystalloid fluid infusions in healthy subjects. The intravascular albumin mass increased. Most patients were hypovolemic prior to the start of anesthesia. Intracellular edema did not occur.


Asunto(s)
Volumen Sanguíneo/fisiología , Puente Cardiopulmonar , Soluciones Isotónicas/farmacocinética , Anciano , Anciano de 80 o más Años , Volumen Sanguíneo/efectos de los fármacos , Edema Encefálico/etiología , Puente de Arteria Coronaria , Soluciones Cristaloides , Espacio Extracelular/metabolismo , Femenino , Transferencias de Fluidos Corporales/efectos de los fármacos , Transferencias de Fluidos Corporales/fisiología , Hemoglobinas/análisis , Humanos , Masculino , Manitol/farmacología , Persona de Mediana Edad , Estudios Prospectivos , Albúmina Sérica/análisis , Sodio/sangre , Sodio/orina , Equilibrio Hidroelectrolítico/fisiología
7.
Clinics ; Clinics;69(8): 535-541, 8/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-718190

RESUMEN

OBJECTIVE: The purpose of this study was to examine the isovolumetric distribution kinetics of crystalloid fluid during cardiopulmonary bypass. METHODS: Ten patients undergoing coronary artery bypass grafting participated in this prospective observational study. The blood hemoglobin and the serum albumin and sodium concentrations were measured repeatedly during the distribution of priming solution (Ringer's acetate 1470 ml and mannitol 15% 200 ml) and initial cardioplegia. The rate of crystalloid fluid distribution was calculated based on 3-min Hb changes. The preoperative blood volume was extrapolated from the marked hemodilution occurring during the onset of cardiopulmonary bypass. Clinicaltrials.gov: NCT01115166. RESULTS: The distribution half-time of Ringer's acetate averaged 8 minutes, corresponding to a transcapillary escape rate of 0.38 ml/kg/min. The intravascular albumin mass increased by 5.4% according to mass balance calculations. The preoperative blood volume, as extrapolated from the drop in hemoglobin concentration by 32% (mean) at the beginning of cardiopulmonary bypass, was 0.6-1.2 L less than that estimated by anthropometric methods (p<0.02). The mass balance of sodium indicated a translocation from the intracellular to the extracellular fluid space in 8 of the 10 patients, with a median volume of 236 ml. CONCLUSIONS: The distribution half-time of Ringer's solution during isovolumetric cardiopulmonary bypass was 8 minutes, which is the same as for crystalloid fluid infusions in healthy subjects. The intravascular albumin mass increased. Most patients were hypovolemic prior to the start of anesthesia. Intracellular edema did not occur. .


Asunto(s)
Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen Sanguíneo/fisiología , Puente Cardiopulmonar , Soluciones Isotónicas/farmacocinética , Volumen Sanguíneo/efectos de los fármacos , Edema Encefálico/etiología , Puente de Arteria Coronaria , Espacio Extracelular/metabolismo , Transferencias de Fluidos Corporales/efectos de los fármacos , Transferencias de Fluidos Corporales/fisiología , Hemoglobinas/análisis , Manitol/farmacología , Estudios Prospectivos , Albúmina Sérica/análisis , Sodio/sangre , Sodio/orina , Equilibrio Hidroelectrolítico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA