Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 16(1): 87, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299981

RESUMEN

BACKGROUND: Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative movement disorder characterized by tremor, ataxic gait, and balance issues resulting from a premutation of the Fragile X Mental Retardation 1 (FMR1) gene. No biomarkers have yet been identified to allow early diagnosis of FXTAS, however, recent studies have reported subtle issues in the stability of younger premutation carriers, before disease onset. This study investigates the efficacy of multiscale entropy analysis (MSE) in detecting early changes in the motor system of premutation carriers without FXTAS. METHODS: Sway complexity of 12 female Premutation carriers and 15 healthy Controls were measured under four conditions: eyes open, closed, and two dual-task conditions. A Sustained Attention Response Task (SART) and a working memory based N-Back task were employed to increase cognitive load while standing on the forceplate. A Complexity Index (Ci) was calculated for anterior-posterior (AP) and mediolateral (ML) sway. Independent t-tests were used to assess between-group differences and Oneway repeated measures ANOVA were used to assess within group differences with Bonferroni corrections to adjust for multiple comparisons. RESULTS: Group performances were comparable with eyes open and closed conditions. The Carrier group's Ci was consistent across tasks and conditions while the Control group's AP Ci increased significantly during the cognitive dual-task (p = 0.001). There was also a strong correlation between CGG repeat length and complexity for the Carrier group (p = 0.004). SIGNIFICANCE: Increased sway complexity is believed to stem from reallocation of attention to facilitate the increased cognitive demands of dual-tasks. Carriers' complexity did not change during dual-tasks, possibly indicating capacity interference and inefficient division of attention. Lower sway complexity in carriers suggests diminished adaptive capacity under stress as well as degradation of motor functioning. Therefore, sway complexity may be a useful tool in identifying early functional decline in FMR1 premutation carriers as well as monitoring progression towards disease onset.


Asunto(s)
Ataxia/diagnóstico , Diagnóstico Precoz , Síndrome del Cromosoma X Frágil/diagnóstico , Equilibrio Postural/fisiología , Temblor/diagnóstico , Anciano , Atención/fisiología , Femenino , Humanos , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA