Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(12): E2310-E2318, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265063

RESUMEN

A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.


Asunto(s)
Bacteriófagos/enzimología , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Virales/metabolismo , Bacteriófagos/química , Bacteriófagos/genética , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Dominios Proteicos , Proteínas Virales/química , Proteínas Virales/genética
2.
Nucleic Acids Res ; 43(14): e94, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25897116

RESUMEN

The substitution of 2'-fluoro for 2'-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2'-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2'-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2'-fluoro-dNMPs by Syn5 RNA polymerase have been identified.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/biosíntesis , ARN Polimerasas Dirigidas por ADN/genética , Desoxirribonucleótidos/metabolismo , Flúor/química , Manganeso , Mutación , Podoviridae/enzimología , ARN/química , Estabilidad del ARN , Sitio de Iniciación de la Transcripción , Transcripción Genética
3.
Nucleic Acids Res ; 42(5): e33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24285303

RESUMEN

The enzyme predominantly used for in vitro run-off RNA synthesis is bacteriophage T7 RNA polymerase. T7 RNA polymerase synthesizes, in addition to run-off products of precise length, transcripts with an additional non-base-paired nucleotide at the 3'-terminus (N+1 product). This contaminating product is extremely difficult to remove. We recently characterized the single-subunit RNA polymerase from marine cyanophage Syn5 and identified its promoter sequence. This marine enzyme catalyses RNA synthesis over a wider range of temperature and salinity than does T7 RNA polymerase. Its processivity is >30,000 nt without significant intermediate products. The requirement for the initiating nucleotide at the promoter is less stringent for Syn5 RNA polymerase as compared to T7 RNA polymerase. A major difference is the precise run-off transcripts with homogeneous 3'-termini synthesized by Syn5 RNA polymerase. Therefore, the enzyme is advantageous for the production of RNAs that require precise 3'-termini, such as tRNAs and RNA fragments that are used for subsequent assembly.


Asunto(s)
Bacteriófagos/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN/biosíntesis , Proteínas Virales/metabolismo , Cianobacterias/virología , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Estabilidad de Enzimas , Nucleótidos/metabolismo , ARN de Transferencia/biosíntesis , Transcripción Genética , Proteínas Virales/aislamiento & purificación
4.
J Biol Chem ; 289(9): 5860-75, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24394415

RESUMEN

Flap endonucleases remove flap structures generated during DNA replication. Gene 6 protein of bacteriophage T7 is a 5'-3'-exonuclease specific for dsDNA. Here we show that gene 6 protein also possesses a structure-specific endonuclease activity similar to known flap endonucleases. The flap endonuclease activity is less active relative to its exonuclease activity. The major cleavage by the endonuclease activity occurs at a position one nucleotide into the duplex region adjacent to a dsDNA-ssDNA junction. The efficiency of cleavage of the flap decreases with increasing length of the 5'-overhang. A 3'-single-stranded tail arising from the same end of the duplex as the 5'-tail inhibits gene 6 protein flap endonuclease activity. The released flap is not degraded further, but the exonuclease activity then proceeds to hydrolyze the 5'-terminal strand of the duplex. T7 gene 2.5 single-stranded DNA-binding protein stimulates the exonuclease and also the endonuclease activity. This stimulation is attributed to a specific interaction between the two proteins because Escherichia coli single-stranded DNA binding protein does not produce this stimulatory effect. The ability of gene 6 protein to remove 5'-terminal overhangs as well as to remove nucleotides from the 5'-termini enables it to effectively process the 5'-termini of Okazaki fragments before they are ligated.


Asunto(s)
Bacteriófago T7/enzimología , ADN Viral/biosíntesis , Proteínas de Unión al ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteínas Virales/metabolismo , Bacteriófago T7/genética , ADN/biosíntesis , ADN/química , ADN/genética , ADN Viral/química , ADN Viral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Proteínas Virales/química , Proteínas Virales/genética
5.
J Bacteriol ; 196(15): 2842-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24858186

RESUMEN

We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373-9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity.


Asunto(s)
Bacteriófago T7/genética , Didesoxinucleótidos/farmacología , Escherichia coli/enzimología , Inhibidores de la Síntesis del Ácido Nucleico , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Nucleótidos de Timina/farmacología , Bacteriófago T7/efectos de los fármacos , Bacteriófago T7/enzimología , Bacteriófago T7/crecimiento & desarrollo , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Didesoxinucleótidos/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Inhibidores de la Síntesis del Ácido Nucleico/metabolismo , Fosforilación , Pirimidina Fosforilasas/genética , Pirimidina Fosforilasas/metabolismo , Eliminación de Secuencia , Timidina/metabolismo , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Nucleótidos de Timina/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
J Biol Chem ; 288(5): 3545-52, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23258537

RESUMEN

A single subunit DNA-dependent RNA polymerase was identified and purified to apparent homogeneity from cyanophage Syn5 that infects the marine cyanobacteria Synechococcus. Syn5 is homologous to bacteriophage T7 that infects Escherichia coli. Using the purified enzyme its promoter has been identified by examining transcription of segments of Syn5 DNA and sequencing the 5'-termini of the transcripts. Only two Syn5 RNAP promoters, having the sequence 5'-ATTGGGCACCCGTAA-3', are found within the Syn5 genome. One promoter is located within the Syn5 RNA polymerase gene and the other is located close to the right genetic end of the genome. The purified enzyme and its promoter have enabled a determination of the requirements for transcription. Unlike the salt-sensitive bacteriophage T7 RNA polymerase, this marine RNA polymerase requires 160 mm potassium for maximal activity. The optimal temperature for Syn5 RNA polymerase is 24 °C, much lower than that for T7 RNA polymerase. Magnesium is required as a cofactor although some activity is observed with ferrous ions. Syn5 RNA polymerase is more efficient in utilizing low concentrations of ribonucleotides than T7 RNA polymerase.


Asunto(s)
Organismos Acuáticos/virología , Bacteriófagos/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Synechococcus/virología , Bacteriófagos/efectos de los fármacos , Secuencia de Bases , Coenzimas/metabolismo , ADN Viral/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno/efectos de los fármacos , Metales/farmacología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Ribonucleótidos/farmacología , Sales (Química)/farmacología , Temperatura , Transcripción Genética/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 108(23): 9372-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606333

RESUMEN

Interactions between gene 4 helicase and gene 5 DNA polymerase (gp5) are crucial for leading-strand DNA synthesis mediated by the replisome of bacteriophage T7. Interactions between the two proteins that assure high processivity are known but the interactions essential to initiate the leading-strand DNA synthesis remain unidentified. Replacement of solution-exposed basic residues (K587, K589, R590, and R591) located on the front surface of gp5 with neutral asparagines abolishes the ability of gp5 and the helicase to mediate strand-displacement synthesis. This front basic patch in gp5 contributes to physical interactions with the acidic C-terminal tail of the helicase. Nonetheless, the altered polymerase is able to replace gp5 and continue ongoing strand-displacement synthesis. The results suggest that the interaction between the C-terminal tail of the helicase and the basic patch of gp5 is critical for initiation of strand-displacement synthesis. Multiple interactions of T7 DNA polymerase and helicase coordinate replisome movement.


Asunto(s)
Bacteriófago T7/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas Virales/metabolismo , Bacteriófago T7/genética , Sitios de Unión/genética , ADN Helicasas/química , ADN Helicasas/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
8.
J Biol Chem ; 287(35): 29468-78, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22761426

RESUMEN

Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ~12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg(2+) in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The K(m) of 4.4 × 10(-4) M obtained with dTTP for dTMP kinase is ~3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10(-4) M), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction.


Asunto(s)
Bacteriófago T7/enzimología , Desoxirribonucleótidos/química , Magnesio/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas Virales/química , Desoxirribonucleótidos/metabolismo , Magnesio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especificidad por Sustrato/fisiología , Proteínas Virales/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(34): 15033-8, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696935

RESUMEN

Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.


Asunto(s)
Bacteriófago T7/enzimología , ADN Polimerasa Dirigida por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Tiorredoxinas/química , Regulación Alostérica , Sitio Alostérico , Bacteriófago T7/genética , Secuencia de Bases , Sitios de Unión , Cartilla de ADN/genética , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Concentración Osmolar , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Tiorredoxinas/metabolismo , Difracción de Rayos X
10.
Mol Microbiol ; 77(2): 492-504, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20497505

RESUMEN

Gene 1.7 of bacteriophage T7 confers sensitivity of both phage T7 and its host Escherichia coli to dideoxythymidine (ddT). We have purified the product of gene 1.7, gp1.7. It exists in two forms of molecular weight 22,181 and 17,782. Only the C-terminal half of the protein is required to confer ddT sensitivity. We show that gp1.7 catalyses the phosphorylation of dGMP and dTMP to dGDP and dTDP, respectively, by using either GTP, dGTP or dTTP as the phosphate donor. Either form of gp1.7 exhibit identical kinase activity as compared with wild-type gp1.7 that contains a mixture of both forms. The K(m) of 70 microM and Kcat of 4.3 s(-1) for dTMP are similar to those found for E. coli thymidylate kinase. However, unlike the host enzyme, gp1.7 efficiently catalyses the conversion of the chain-terminating dideoxythymidylate (ddTMP) to ddTDP. This finding explains the sensitivity of phage T7 but not E. coli to exogenous ddT. Gp1.7 is unusual in that it has no sequence homology to any known nucleotide kinase, it has no identifiable nucleotide-binding motif and its activity is independent of added metal ions. When coupled with nucleoside diphosphate kinase, gp1.7 exponentially converts dTMP to dTTP.


Asunto(s)
Bacteriófago T7/enzimología , Nucleósido-Fosfato Quinasa/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago T7/genética , Secuencia de Bases , Nucleótidos de Desoxiguanina/metabolismo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Nucleósido-Fosfato Quinasa/genética , Fosforilación , Eliminación de Secuencia , Timidina Quinasa/metabolismo , Nucleótidos de Timina/metabolismo , Proteínas Virales/genética
11.
Proc Natl Acad Sci U S A ; 105(27): 9373-8, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18599435

RESUMEN

Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.


Asunto(s)
Bacteriófago T7/crecimiento & desarrollo , Bacteriófago T7/genética , Farmacorresistencia Viral/efectos de los fármacos , Genes Virales , Timidina/análogos & derivados , Timidina/farmacología , Bacteriófago T7/enzimología , Bacteriófago T7/aislamiento & purificación , Clonación Molecular , ADN Viral/biosíntesis , Escherichia coli/enzimología , Escherichia coli/virología , Eliminación de Gen , Mutación/genética , Análisis de Secuencia de ADN , Timidina Quinasa/metabolismo
12.
Mol Microbiol ; 72(4): 869-80, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19400798

RESUMEN

Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.


Asunto(s)
Bacteriófago T7/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Fenilalanina/genética , Proteínas Virales/genética , Bacteriófago T7/enzimología , Escherichia coli/virología , Supresión Genética
13.
J Virol ; 83(17): 8418-27, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19535436

RESUMEN

The DNA polymerase encoded by gene 5 (gp5) of bacteriophage T7 has low processivity, dissociating after the incorporation of a few nucleotides. Upon binding to its processivity factor, Escherichia coli thioredoxin (Trx), the processivity is increased to approximately 800 nucleotides per binding event. Several interactions between gp5/Trx and DNA are required for processive DNA synthesis. A basic region in T7 DNA polymerase (residues K587, K589, R590, and R591) is located in proximity to the 5' overhang of the template strand. Replacement of these residues with asparagines results in a threefold reduction of the polymerization activity on primed M13 single-stranded DNA. The altered gp5/Trx exhibits a 10-fold reduction in its ability to support growth of T7 phage lacking gene 5. However, T7 phages that grow at a similar rate provided with either wild-type or altered polymerase emerge. Most of the suppressor phages contain genetic changes in or around the coding region for gene 3, an endonuclease. Altered gene 3 proteins derived from suppressor strains show reduced catalytic activity and are inefficient in complementing growth of T7 phage lacking gene 3. Results from this study reveal that defects in processivity of DNA polymerase can be suppressed by reducing endonuclease activity.


Asunto(s)
Bacteriófago T7/crecimiento & desarrollo , Bacteriófago T7/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasa I/genética , Supresión Genética , Replicación Viral , Escherichia coli/virología , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Ensayo de Placa Viral
14.
Bacteriophage ; 4: e28507, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25105057

RESUMEN

Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependency of activity on the length of the 5'-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3'-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5'-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.

15.
Curr Protoc Mol Biol ; Chapter 3: Unit3.14, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21472697

RESUMEN

The DNA ligase enzyme family catalyzes the formation of a phosphodiester bond between juxtaposed 5'-phosphate and 3'-hydroxyl termini in duplex DNA. This activity can seal nicks in duplex DNA or join double-stranded DNA fragments having either blunt or cohesive ends. DNA ligases are central enzymes in molecular biology, nucleic acid research, and in next-generation sequencing applications. Reaction conditions and applications for T4 DNA ligase, E. coli DNA ligase, and thermostable DNA ligases are described in this unit. These enzymes differ in their cofactor requirements, substrate specificity, and thermal stability.


Asunto(s)
Bacteriófagos/enzimología , ADN Ligasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Técnicas Genéticas , Proteínas Virales/metabolismo , Bacteriófagos/genética , Técnicas Genéticas/instrumentación
16.
Curr Protoc Mol Biol ; Chapter 3: Unit3.15, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18972386

RESUMEN

T4 RNA ligase 1 catalyzes the ATP-dependent covalent joining of single-stranded 5'-phosphoryl termini of DNA or RNA to single-stranded 3'-hydroxyl termini of DNA or RNA. T4 RNA ligase 2 also catalyzes the joining of a 3'-hydroxyl terminus of RNA to a 5'-phosphorylated RNA or DNA; unlike T4 RNA ligase 1, this enzyme prefers double-stranded substrates. A truncated form of T4 RNA ligase 2 requires a pre-adenylated substrate for ligation. This unit describes specific reaction conditions, as well as applications such as radioactive labeling of the 3' termini of RNA, circularizing oligodeoxyribonucleotides and oligoribonucleotides, ligating oligomers and nicks, creating hybrid and chimeric DNA/RNA molecules, and miRNA cloning.


Asunto(s)
Bacteriófago T4/enzimología , Hibridación de Ácido Nucleico/métodos , ARN Ligasa (ATP)/metabolismo , Proteínas Virales/metabolismo , Marcaje Isotópico/métodos , ARN/química , ARN/genética , ARN Ligasa (ATP)/química , Especificidad por Sustrato , Proteínas Virales/química
17.
Curr Protoc Mol Biol ; Chapter 3: Unit3.6, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18972388

RESUMEN

Terminal deoxynucleotidyl transferase (TdT), is a template-independent DNA polymerase that catalyzes the incorporation of deoxynucleotides at the 3'-hydroxyl terminus of DNA, accompanied by the release of inorganic phosphate. TdT does not require a template and will not copy one. Reaction conditions and some applications are described in this unit, including cloning DNA fragments, labeling the 3' terminus of DNA with (32)P or nonradioactive tags, synthesizing model polydeoxynucleotide homopolymers, and detecting DNA damage and apoptotic cells.


Asunto(s)
Clonación Molecular/métodos , ADN Nucleotidilexotransferasa/metabolismo , Etiquetado Corte-Fin in Situ/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Nucleótidos/metabolismo , Moldes Genéticos
18.
Curr Protoc Mol Biol ; Chapter 3: Unit3.7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18972389

RESUMEN

Reverse transcriptases (RTs) are multifunctional enzymes, but are mainly used as RNA-directed DNA polymerases in first-strand cDNA synthesis. Specifically, oligodeoxynucleotides are used as primers for extension on RNA templates. The DNA synthesized from an RNA template is referred to as complementary DNA (cDNA) and is often used as a template for PCR or converted to dsDNA for cloning. This unit describes appropriate reaction conditions for RTs from Moloney murine leukemia virus (MMLV) and avian myeloblastosis virus (AMV), along with applications such as synthesizing cDNA, 3' fill-in reactions, and labeling the 3' terminus of DNA fragments with 5' protruding ends, and DNA sequencing.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Polimerasa Dirigida por ARN/metabolismo , Análisis de Secuencia de ADN/métodos , Proteínas Virales/metabolismo , Animales , Virus de la Mieloblastosis Aviar/enzimología , Cartilla de ADN/genética , ADN Complementario/genética , Virus de la Leucemia Murina de Moloney/enzimología , Nucleótidos/metabolismo , ADN Polimerasa Dirigida por ARN/genética , Proteínas Virales/genética
19.
Mol Microbiol ; 67(2): 448-57, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18067538

RESUMEN

Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin, an inhibitor of host RNA polymerase, restores the burst size of T7 phage on udk-overexpressing hosts to normal. In agreement with these findings, suppressor mutants that overcome the inhibition arising from udk overexpression gain the ability to grow on hosts that are resistant to inhibition of RNA polymerase by gene 2 protein, and suppressor mutants that overcome a lack of gene 2 protein gain the ability to grow on hosts that overexpress udk. Mutations that eliminate or weaken strong promoters for host RNA polymerase in T7 DNA, and mutations in T7 gene 3.5 that affect its interaction with T7 RNA polymerase, also reduce the interference with T7 growth by host RNA polymerase. We propose a general model for the requirement of host RNA polymerase inhibition.


Asunto(s)
Bacteriófago T7/crecimiento & desarrollo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/virología , Proteínas de Escherichia coli/metabolismo , Uridina Quinasa/metabolismo , Bacteriófago T7/genética , Fenómenos Fisiológicos Celulares , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Genes Supresores , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Rifampin/farmacología , Uridina Quinasa/genética
20.
Mol Cell ; 27(4): 539-49, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17707227

RESUMEN

A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.


Asunto(s)
Bacteriófago T7/enzimología , ADN Helicasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Catálisis , Cristalografía por Rayos X , Cartilla de ADN/metabolismo , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Eliminación de Secuencia , Solventes , Moldes Genéticos , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA