Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell Environ ; 47(2): 460-481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37876364

RESUMEN

Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.


Asunto(s)
Crassulaceae , Agua , Agua/fisiología , Hojas de la Planta/fisiología , Evolución Biológica , África Austral
2.
Opt Lett ; 44(17): 4383-4386, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465408

RESUMEN

We report on the progress towards developing a new method for fabricating more efficient, broadband antireflective (AR) moth-eye structures in As2Se3 via a direct nanoimprinting technique. Thermal reflow is used during mold fabrication to reshape a conventional deep-ultraviolet lithography in order to promote a pattern transfer of "secant ogive"-like moth-eye structures. Once replicated, structures modified by reflow displayed greater AR efficiency compared to structures replicated by a conventional mold, achieving the highest spectrum-averaged transmittance improvement of 12.36% from 3.3 to 12 µm.

3.
Opt Lett ; 44(22): 5505-5508, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730094

RESUMEN

Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 µm, the total transmission of a 15 µm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber. Through a combined effect of reduced reflection and redshifting of the spectrum to 5 µm, the relative transmission of light >3.5 µm in the same fiber was increased by 60.2%. Further extension of the spectrum to 8 µm was achieved using tapered fibers. The spectral broadening dynamics and output power were investigated using different taper parameters and pulse repetition rates.

4.
Langmuir ; 33(21): 5197-5203, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28494156

RESUMEN

The random nature of dropwise condensation impedes spatial control hereof and its use for creating microdroplet arrays, yet here we demonstrate the spatial control of dropwise condensation on a chemically homogeneous pillar array surface, yielding ∼8000 droplets/mm2 under normal atmospheric pressure conditions. The studied pillar array surface is defined by photolithography and etched in silicon by deep reactive ion etching. Subsequently, the surface is covered with a self-assembled monolayer of perfluorodecyltrichlorosilane (FDTS) to render the surface hydrophobic. To obtain a perfect droplet array, with one droplet per pillar, we exploit a phenomenon where the water vapor flux is focused on the apexes of surface asperities by diffusion while matching the nucleation point density to the array dimensions. Matching is here achieved through the variation of interpillar distance and vapor flow conditions.

5.
Nanotechnology ; 28(25): 255303, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28510536

RESUMEN

Electroosmotic flow (EOF) is an electric-field-induced fluid flow that has numerous micro-/nanofluidic applications, ranging from pumping to chemical and biomedical analyses. Nanoscale networks/structures are often integrated in microchannels for a broad range of applications, such as electrophoretic separation of biomolecules, high reaction efficiency catalytic microreactors, and enhancement of heat transfer and sensing. Their introduction has been known to reduce EOF. Hitherto, a proper study on the effect of nanostructures orientation on EOF in a microfluidic channel is yet to be carried out. In this investigation, we present a novel fabrication method for nanostructure designs that possess maximum orientation difference, i.e. parallel versus perpendicular indented nanolines, to examine the effect of nanostructures orientation on EOF. It consists of four phases: fabrication of silicon master, creation of mold insert via electroplating, injection molding with cyclic olefin copolymer, and thermal bonding and integration of practical inlet/outlet ports. The effect of nanostructures orientation on EOF was studied experimentally by current monitoring method. The experimental results show that nanolines which are perpendicular to the microchannel reduce the EOF velocity significantly (approximately 20%). This flow velocity reduction is due to the distortion of local electric field by the perpendicular nanolines at the nanostructured surface as demonstrated by finite element simulation. In contrast, nanolines which are parallel to the microchannel have no effect on EOF, as it can be deduced that the parallel nanolines do not distort the local electric field. The outcomes of this investigation contribute to the precise control of EOF in lab-on-chip devices, and fundamental understanding of EOF in devices which utilize nanostructured surfaces for chemical and biological analyses.

6.
Langmuir ; 32(32): 8009-18, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27483032

RESUMEN

UNLABELLED: We use a vapor-phase synthesis to generate conducting polymer films with low apparent capacitance and high conductance enabling rapid electrochemical measurements. Specifically, oxidative chemical vapor deposition was used to create thin films of poly(3,4-ethylenedioxythiophene):tosylate ( PEDOT: tosylate). These films had a conductance of 17.1 ± 1.7 S/cm. Furthermore, they had an apparent capacitance of 197 ± 14 µF/cm(2), which is an order of magnitude lower than current commercially available and previously reported PEDOT. Using a multistage photolithography process, these films were patterned into PEDOT: tosylate microelectrodes and were used to perform fast-scan cyclic voltammetry (FSCV) measurements. Using a scan rate of 100 V/s, we measured ferrocene carboxylic acid and dopamine by FSCV. In contrast to carbon-fiber microelectrodes, the reduction peak showed higher sensitivity when compared to the oxidation peak. The adsorption characteristics of dopamine at the polymer electrode were fit to a Langmuir isotherm. The low apparent capacitance and the microlithographic processes for electrode design make PEDOT: tosylate an attractive material for future applications as an implantable biosensor for FSCV measurements. Additionally, the integration of PEDOT: tosylate electrodes on plastic substrates enables new electrochemical measurements at this polymer using FSCV.

7.
Appl Opt ; 55(34): 9719-9723, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27958461

RESUMEN

We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations of the structures. The method is tested on injection-molded polymer line gratings, and the height and filling factor are determined with confidence intervals similar to more advanced imaging scatterometry setups.

8.
Sensors (Basel) ; 16(11)2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27801809

RESUMEN

We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

9.
Langmuir ; 30(17): 5041-5, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24735125

RESUMEN

We study water drop roll-off at superhydrophobic surfaces with different surface patterns. Superhydrophobic microcavity surfaces were fabricated in silicon and coated with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS). For the more irregular surface patterns, the observed increase in roll-off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance between the torque exerted by the projected gravity force and the torque exerted by the adhesion force acting along the triple line on the receding side of the drop. This simple model provides a proper order of magnitude estimate of the measured effects.

10.
Langmuir ; 30(43): 12960-8, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25289462

RESUMEN

In this article, we present a simple and fast optical method based on transmission microscopy to study the stochastic wetting transitions on micro- and nanostructured polymer surfaces immersed in water. We analyze the influence of immersion time and the liquid pressure on the degree of water intrusion in individual microcavities on these surfaces as well as the lifespan of their superhydrophobicity. We show that transitions among the three wetting states (Cassie, Cassie-impregnating, and Wenzel) occur with a certain pressure threshold (300 mbar for a microcavity diameter of 7.5 µm). Below this threshold, the transitions between the Cassie and the Cassie-impregnating states are reversible, whereas above this threshold, irreversible transitions to the Wenzel state start to occur. The transitions between the different wetting states can be explained by taking into account both the Young-Laplace equation for the water menisci in the cavities and the diffusion of dissolved gas molecules in the water. In addition, the wetting transitions had a stochastic nature, which resulted from the short diffusion distance for dissolved gas molecules in the water between neighboring cavities. Furthermore, we compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the difference in the water repellency of the two materials to a difference in the wetting of their nanostructures. Our experimental observations thus indicate that both the diffusion of gas molecules in water and the wetting properties of nanostructures are important for understanding the sustainability of superhydrophobicity of surfaces under water and for improving the structural design of superhydrophobic surfaces.

11.
Nat Commun ; 15(1): 124, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167376

RESUMEN

Photocatalytic effects resulting in water splitting, reduction of carbon dioxide to fuels using solar energy, decomposition of organic compounds, and light-induced hydrophilicity observed on surfaces of various metal oxides (MOx), all rely on the same basic physical mechanisms, and have attracted considerable interest over the past decades. TiO2 and ZnO, two natively n-type doped wide bandgap semiconductors exhibit the effects mentioned above. In this study we propose a model for the photo-induced hydrophilicity in MOx films, and we test the model for TiO2/Si and ZnO/Si heterojunctions. Experimentally, we employ a wet exposure technique whereby the MOx surface is exposed to UV light while a water droplet is sitting on the surface, which allows for a continuous recording of contact angles during illumination. The proposed model and the experimental techniques allow a determination of minority carrier diffusion lengths by contact angle measurements and suggest design rules for materials exhibiting photocatalytic hydrophilicity. We expect that this methodology can be extended to improve our physical understanding of other photocatalytic surface effects.

12.
Analyst ; 138(4): 1249-55, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23314250

RESUMEN

Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and/or requirement of specialized facilities/skill-sets. In this article we show that nanochannel-based mapping can be performed in all polymer chips fabricated via injection molding: a fabrication process so inexpensive that the devices can be considered disposable. Fluorescent intensity variations can be obtained from molecules extended in the polymer nanochannels via chemical counterstaining against YOYO-1. In particular, we demonstrate that the counterstaining induced fluorescent intensity variations to a large degree appear to be proportional to the theoretically computed sequence-maps of both local AT and GC variation along DNA sequences.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Nanotecnología/métodos , Polímeros/química , Purinas/análisis , Pirimidinas/análisis , ADN/análisis , Ligandos
13.
RSC Adv ; 13(47): 33159-33166, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37964901

RESUMEN

Although aquaculture is a major player in current and future food production, the routine use of antibiotics provides ample ground for development of antibiotic resistance. An alternative route to disease control is the use of probiotic bacteria such as the marine bacteria Phaeobacter inhibens which produces tropodithietic acid (TDA) that inhibit pathogens without affecting the fish. Improving conditions for the formation of biofilm and TDA-synthesis is a promising avenue for biocontrol in aquaculture. In this study, the biosynthesis of TDA by Phaeobacter inhibens grown on micro-structured polymeric surfaces in micro-fluidic flow-cells is investigated. The formation of biofilms on three surface topographies; hexagonal micro-pit-arrays, hexagonal micro-pillar-arrays, and planar references is investigated. The biomass on these surfaces is measured by a non-invasive confocal microscopy 3D imaging technique, and the corresponding TDA production is monitored by liquid chromatography mass spectrometry (LC-MS) in samples collected from the outlets of the microfluidic channels. Although all surfaces support growth of P. inhibens, biomass appears to be decoupled from total TDA biosynthesis as the micro-pit-arrays generate the largest biomass while the micro-pillar-arrays produce significantly higher amounts of TDA. The findings highlight the potential for optimized micro-structured surfaces to maintain biofilms of probiotic bacteria for sustainable aquacultures.

14.
Anal Chem ; 84(18): 7744-9, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22928986

RESUMEN

Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.


Asunto(s)
Capacidad Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Polímeros/química , Poliestirenos/química , Tiofenos/química
15.
Analyst ; 137(21): 5057-61, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22977881

RESUMEN

We present an all polymer electrochemical chip for simple detection of transmitter release from large groups of cultured PC 12 cells. Conductive polymer PEDOT:tosylate microelectrodes were used together with constant potential amperometry to obtain easy-to-analyze oxidation signals from potassium-induced release of transmitter molecules. The nature of the resulting current peaks is discussed, and the time for restoring transmitter reservoirs is studied. The relationship between released transmitters and potassium concentration was found to fit to a sigmoidal dose-response curve. Finally, we demonstrate how the presented device can be used for simple drug screening purposes, by measuring the increase of transmitter release due to short-term treatment with L-DOPA.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Electroquímica/métodos , Neuronas/metabolismo , Neurotransmisores/metabolismo , Polímeros/química , Animales , Técnicas Biosensibles/economía , Evaluación Preclínica de Medicamentos , Electroquímica/economía , Levodopa/farmacología , Neuronas/efectos de los fármacos , Células PC12 , Potasio/farmacología , Ratas
16.
Analyst ; 137(8): 1831-6, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22383043

RESUMEN

In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 µm were fabricated on polymer substrates using UV lithographic methods. The electrodes are electrochemically stable in a range between -200 mV and 700 mV vs. Ag/AgCl and show a relatively low resistance. A wide range of transmitters is shown to oxidize readily on the electrodes. Kinetic rate constants and half wave potentials are reported. The capacitance per area was found to be high (1670 ± 130 µF cm(-2)) compared to other thin film microelectrode materials. Finally, we use constant potential amperometry to measure the release of transmitters from a group of PC 12 cells. The results show how the current response decreases for a series of stimulations with high K(+) buffer.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Microelectrodos , Polímeros/química , Animales , Electrodos , Cinética , Células PC12 , Ratas , Rayos Ultravioleta
17.
Micromachines (Basel) ; 12(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34442548

RESUMEN

Several marine bacteria of the Roseobacter group can inhibit other microorganisms and are especially antagonistic when growing in biofilms. This aptitude to naturally compete with other bacteria can reduce the need for antibiotics in large-scale aquaculture units, provided that their culture can be promoted and controlled. Micropatterned surfaces may facilitate and promote the biofilm formation of species from the Roseobacter group, due to the increased contact between the cells and the surface material. Our research goal is to fabricate biofilm-optimal micropatterned surfaces and investigate the relevant length scales for surface topographies that can promote the growth and biofilm formation of the Roseobacter group of bacteria. In a preliminary study, silicon surfaces comprising arrays of pillars and pits with different periodicities, diameters, and depths were produced by UV lithography and deep reactive ion etching (DRIE) on polished silicon wafers. The resulting surface microscale topologies were characterized via optical profilometry and scanning electron microscopy (SEM). Screening of the bacterial biofilm on the patterned surfaces was performed using green fluorescent staining (SYBR green I) and confocal laser scanning microscopy (CLSM). Our results indicate that there is a correlation between the surface morphology and the spatial organization of the bacterial biofilm.

18.
Nanoscale Adv ; 3(8): 2236-2244, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36133765

RESUMEN

In this paper, we demonstrate plasmonic color metasurfaces as large as ∼60 cm2 fabricated by deep UV projection lithography employing an innovative combination of resolution enhancement techniques. Briefly, in addition to the established off-axis dipole illumination, double- and cross-exposure resolution enhancement of lithography, we introduce a novel element, the inclusion of transparent assist features to the mask layout. With this approach, we demonstrate the fabrication of relief arrays having critical dimensions such as 159 nm nanopillars or 210 nm nanoholes with 300 nm pitches, which is near the theoretical resolution limit expressed by the Rayleigh criterion for the 248 nm lithography tool used in this work. The type of surface structure, i.e. nanopillar or nanohole, and their diameters can be tailored simply by changing the width of the assist features included in the mask layout. By coating the obtained nanopatterns with thin layers of either Au or Al, we observe color spectra originating from the phenomenon known as localized surface plasmon resonance (LSPR). We demonstrate the generation of color palettes representing a broad spectral range of colors, and we employ finite element modelling to corroborate the measured LSPR fingerprint spectra. Most importantly, the ∼60 cm2 nanostructure arrays can be written in only a few minutes, which is a tremendous improvement compared to the more established techniques employed for fabricating similar structures.

19.
ACS Appl Mater Interfaces ; 13(37): 43914-43924, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491739

RESUMEN

FluorAcryl 3298 (FA) is a UV-curable fluoroacrylate polymer commonly employed as a chemically resistant, hydrophobic, and oleophobic coating. Here, FA was used in a cleanroom-based microstructuring process to fabricate hydrophilic-in-hydrophobic (HiH) micropatterned surfaces containing femtoliter-sized well arrays. A short protocol involving direct UV photopatterning, an etching step, and final recovery of the hydrophobic properties of the polymer produced patterned substrates with micrometer resolution. Specifically, HiH microwell arrays were obtained with a well diameter of 10 µm and various well depths ranging from 300 nm to 1 µm with high reproducibility. The 300 nm deep microdroplet array (MDA) substrates were used for digital immunoassays, which presented a limit of detection in the attomolar range. This demonstrated the chemical functionality of the hydrophilic and hydrophobic surfaces. Furthermore, the 1 µm deep wells could efficiently capture particles such as bacteria, whereas the 300 nm deep substrates or other types of flat HiH molecular monolayers could not. Capturing a mixture of bacteria expressing red- and green-fluorescent proteins, respectively, served as a model for screening and selection of specific phenotypes using FA-MDAs. Here, green-fluorescent bacteria were specifically selected by overlaying a solution of gelatin methacryloyl (GelMA) mixed with a photoinitiator and using a high-magnification objective, together with custom pinholes, in a common fluorescence microscope to cross-link the hydrogel around the bacteria of interest. In conclusion, due to the straightforward processing, versatility, and low-price, FA is an advantageous alternative to more commonly used fluorinated materials, such as CYTOP or Teflon-AF, for the fabrication of HiH microwell arrays and other biphilic microstructures.


Asunto(s)
Resinas Acrílicas/química , Separación Celular/métodos , Hidrocarburos Fluorados/química , Inmunoensayo/métodos , Imagen Individual de Molécula/métodos , Anticuerpos/análisis , Anticuerpos/inmunología , Separación Celular/instrumentación , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/inmunología , Inmunoensayo/instrumentación , Imagen Individual de Molécula/instrumentación , Proteínas tau/química , Proteínas tau/inmunología
20.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34578614

RESUMEN

Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro- and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for example, are well known and have been successfully replicated using micro- and nanofabrication. However, other animal species, such as birds of paradise and peacock spiders, have evolved to display larger structures with antireflective features. In peacock spiders, the antireflective properties of their super black patches arise from relatively simple microstructures with lens-like shapes organized in tightly packed hexagonal arrays, which makes them a good candidate for cheap mass replication techniques. In this paper, we present the fabrication and characterization of antireflective microarrays inspired by the peacock spider's super black structures encountered in nature. Firstly, different microarrays 3D models are generated from a surface equation. Secondly, the arrays are fabricated in a polyacrylate resin by super-resolution 3D printing using two-photon polymerization. Thirdly, the resulting structures are inspected using a scanning electron microscope. Finally, the reflectance and transmittance of the printed structures are characterized at normal incidence with a dedicated optical setup. The bioinspired microlens arrays display excellent antireflective properties, with a measured reflectance as low as 0.042 ± 0.004% for normal incidence, a wavelength of 550 nm, and a collection angle of 14.5°. These values were obtained using a tightly-packed array of slightly pyramidal lenses with a radius of 5 µm and a height of 10 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA