Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1165-1183, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749429

RESUMEN

The pathological huntingtin (HTT) trinucleotide repeat underlying Huntington disease (HD) continues to expand throughout life. Repeat length correlates both with earlier age at onset (AaO) and faster progression, making slowing its expansion an attractive therapeutic approach. Genome-wide association studies have identified candidate variants associated with altered AaO and progression, with many found in DNA mismatch repair (MMR)-associated genes. We examine whether lowering expression of these genes affects the rate of repeat expansion in human ex vivo models using HD iPSCs and HD iPSC-derived striatal medium spiny neuron-enriched cultures. We have generated a stable CRISPR interference HD iPSC line in which we can specifically and efficiently lower gene expression from a donor carrying over 125 CAG repeats. Lowering expression of each member of the MMR complexes MutS (MSH2, MSH3, and MSH6), MutL (MLH1, PMS1, PMS2, and MLH3), and LIG1 resulted in characteristic MMR deficiencies. Reduced MSH2, MSH3, and MLH1 slowed repeat expansion to the largest degree, while lowering either PMS1, PMS2, or MLH3 slowed it to a lesser degree. These effects were recapitulated in iPSC-derived striatal cultures where MutL factor expression was lowered. CRISPRi-mediated lowering of key MMR factor expression to levels feasibly achievable by current therapeutic approaches was able to effectively slow the expansion of the HTT CAG tract. We highlight members of the MutL family as potential targets to slow pathogenic repeat expansion with the aim to delay onset and progression of HD and potentially other repeat expansion disorders exhibiting somatic instability.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína Huntingtina , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de Repetición de Trinucleótido/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Genes Modificadores , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo
2.
Nat Rev Neurosci ; 21(8): 401-415, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32555340

RESUMEN

The human motor cortex comprises a microcircuit of five interconnected layers with different cell types. In this Review, we use a layer-specific and cell-specific approach to integrate physiological accounts of this motor cortex microcircuit with the pathophysiology of neurodegenerative diseases affecting motor functions. In doing so we can begin to link motor microcircuit pathology to specific disease stages and clinical phenotypes. Based on microcircuit physiology, we can make future predictions of axonal loss and microcircuit dysfunction. With recent advances in high-resolution neuroimaging we can then test these predictions in humans in vivo, providing mechanistic insights into neurodegenerative disease.


Asunto(s)
Corteza Motora/fisiología , Vías Nerviosas/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Animales , Humanos , Corteza Motora/anatomía & histología , Corteza Motora/citología
3.
Artículo en Inglés | MEDLINE | ID: mdl-39443079

RESUMEN

BACKGROUND: Genetic testing for Huntington's disease (HD) was initially usually positive but more recently the negative rate has increased: patients with negative HD tests are described as having HD phenocopy syndromes (HDPC). This study examines their clinical characteristics and investigates the genetic causes of HDPC. METHODS: Clinical data from neurogenetics clinics and HDPC gene-panel data were analysed. Additionally, a subset of 50 patients with HDPC underwent whole-genome sequencing (WGS) analysed via Expansion Hunter and Ingenuity Variant Analysis. RESULTS: HDPC prevalence was estimated at 2.3-2.9 per 100 000. No clinical discriminators between patients with HD and HDPC could be identified. In the gene-panel data, deleterious variants and potentially deleterious variants were over-represented in cases versus controls. WGS analysis identified one ATXN1 expansion in a patient with HDPC. CONCLUSIONS: The HDPC phenotype is consistent with HD, but the genotype is distinct. Both established deleterious variants and novel potentially deleterious variants in genes related to neurodegeneration contribute to HDPC.

4.
Mov Disord ; 39(10): 1809-1816, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39101272

RESUMEN

BACKGROUND: Clinical trial scenarios can be modeled using data from observational studies, providing critical information for design of real-world trials. The Huntington's Disease Integrated Staging System (HD-ISS) characterizes disease progression over an individual's lifespan and allows for flexibility in the design of trials with the goal of delaying progression. Enrichment methods can be applied to the HD-ISS to identify subgroups requiring smaller estimated sample sizes. OBJECTIVE: Investigate time to the event of functional decline (HD-ISS Stage 3) as an endpoint for trials in HD and present sample size estimates after enrichment. METHODS: We classified individuals from observational studies according to the HD-ISS. We assessed the ability of the prognostic index normed (PIN) and its components to predict time to HD-ISS Stage 3. For enrichment, we formed groups from deciles of the baseline PIN distribution for HD-ISS Stage 2 participants. We selected enrichment subgroups closer to Stage 3 transition and estimated sample sizes, using delay in the transition time as the effect size. RESULTS: In predicting time to HD-ISS Stage 3, PIN outperforms its components. Survival curves for each PIN decile show that groups with PIN from 1.48 to 2.74 have median time to Stage 3 of approximately 2 years and these are combined to create enrichment subgroups. Sample size estimates are presented by enrichment subgroup. CONCLUSIONS: PIN is predictive of functional decline. A delay of 9 months or more in the transition to Stage 3 for an enriched sample yields feasible sample size estimates, demonstrating that this approach can aid in planning future trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Progresión de la Enfermedad , Enfermedad de Huntington , Enfermedad de Huntington/fisiopatología , Humanos , Tamaño de la Muestra , Femenino , Masculino , Persona de Mediana Edad , Ensayos Clínicos como Asunto/métodos , Adulto , Pronóstico , Factores de Tiempo
5.
Mov Disord ; 39(2): 227-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179605

RESUMEN

The gene for Huntington's disease (HD) was discovered in 1993, after an international collaborative initiative that led researchers to remote regions of South America. It was the most remarkable milestone, since George Huntington's initial description. Through the phenomenological discussions led by Jean-Martin Charcot and Willian Osler, and finally Americo Negrette's reports, which served as the inspiration for the Venezuela Project led by Nancy Wexler, the journey toward discovering the Huntington's disease (HD) gene was marked by substantial efforts. This monumental achievement involved the analysis of more than 18,000 blood samples and gathered dozens of researchers in an integrated effort, enabling the mapping of the gene on chromosome 4 in 1983 and leading, a decade later, to the precise localization and identification of the HTT gene. The discovery of the HD mutation represented a pivotal moment in the field of genetics and neurology, significantly enhancing our understanding of the disease and creating opportunities for future treatments. The progress made and the knowledge gained during this journey catalyzed the development of many innovative molecular techniques that have advanced research in other medical conditions. In this article, the authors celebrate three decades of this memorable event, revisiting the historical aspects, providing insights into the techniques developed, and delving into the paths that ultimately led to the discovery of the HD gene. © 2024 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Huntington , Trastornos del Movimiento , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Mutación , Estudios de Asociación Genética
6.
Brain ; 146(11): 4532-4546, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37587097

RESUMEN

Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Endoteliales/metabolismo , Encéfalo/patología , Sustancia Gris/patología , Atrofia/patología , Imagen por Resonancia Magnética
7.
Psychol Med ; 53(5): 1850-1859, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310334

RESUMEN

BACKGROUND: Apathy, a disabling and poorly understood neuropsychiatric symptom, is characterised by impaired self-initiated behaviour. It has been hypothesised that the opportunity cost of time (OCT) may be a key computational variable linking self-initiated behaviour with motivational status. OCT represents the amount of reward which is foregone per second if no action is taken. Using a novel behavioural task and computational modelling, we investigated the relationship between OCT, self-initiation and apathy. We predicted that higher OCT would engender shorter action latencies, and that individuals with greater sensitivity to OCT would have higher behavioural apathy. METHODS: We modulated the OCT in a novel task called the 'Fisherman Game', Participants freely chose when to self-initiate actions to either collect rewards, or on occasion, to complete non-rewarding actions. We measured the relationship between action latencies, OCT and apathy for each participant across two independent non-clinical studies, one under laboratory conditions (n = 21) and one online (n = 90). 'Average-reward' reinforcement learning was used to model our data. We replicated our findings across both studies. RESULTS: We show that the latency of self-initiation is driven by changes in the OCT. Furthermore, we demonstrate, for the first time, that participants with higher apathy showed greater sensitivity to changes in OCT in younger adults. Our model shows that apathetic individuals experienced greatest change in subjective OCT during our task as a consequence of being more sensitive to rewards. CONCLUSIONS: Our results suggest that OCT is an important variable for determining free-operant action initiation and understanding apathy.


Asunto(s)
Apatía , Adulto , Humanos , Cognición , Simulación por Computador , Motivación , Refuerzo en Psicología
8.
Brain ; 145(3): 991-1000, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34633421

RESUMEN

The gating of movement depends on activity within the cortico-striato-thalamic loops. Within these loops, emerging from the cells of the striatum, run two opponent pathways-the direct and indirect basal ganglia pathways. Both are complex and polysynaptic, but the overall effect of activity within these pathways is thought to encourage and inhibit movement, respectively. In Huntington's disease, the preferential early loss of striatal neurons forming the indirect pathway is thought to lead to disinhibition, giving rise to the characteristic motor features of the condition. But early Huntington's disease is also associated with apathy, a loss of motivation and failure to engage in goal-directed movement. We hypothesized that in Huntington's disease, motor signs and apathy may be selectively correlated with indirect and direct pathway dysfunction, respectively. We used spectral dynamic casual modelling of resting-state functional MRI data to model effective connectivity in a model of these cortico-striatal pathways. We tested both of these hypotheses in vivo for the first time in a large cohort of patients with prodromal Huntington's disease. Using an advanced approach at the group level we combined parametric empirical Bayes and Bayesian model reduction procedures to generate a large number of competing models and compare them using Bayesian model comparison. With this automated Bayesian approach, associations between clinical measures and connectivity parameters emerge de novo from the data. We found very strong evidence (posterior probability > 0.99) to support both of our hypotheses. First, more severe motor signs in Huntington's disease were associated with altered connectivity in the indirect pathway components of our model and, by comparison, loss of goal-direct behaviour or apathy, was associated with changes in the direct pathway component. The empirical evidence we provide here demonstrates that imbalanced basal ganglia connectivity may play an important role in the pathogenesis of some of commonest and disabling features of Huntington's disease and may have important implications for therapeutics.


Asunto(s)
Apatía , Enfermedad de Huntington , Ganglios Basales , Teorema de Bayes , Cuerpo Estriado , Humanos , Enfermedad de Huntington/patología , Vías Nerviosas/patología
9.
Brain ; 145(11): 3953-3967, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35758263

RESUMEN

Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest stages of Huntington's disease (preHD) 10-15 years from clinical diagnosis. However, whether widespread network connectivity changes are seen in gene carriers much further from onset has yet to be explored. We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on average 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression. We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, correlated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical regions associated with regional expression of genes specific to neuronal cells. This relationship was validated using single-nucleus RNAseq data from post-mortem Huntington's disease and control brains showing enrichment of neuronal-specific genes that are differentially expressed in Huntington's disease. Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregulated connectivity correlating with increased disease burden. These changes occur among brain areas that show regional expression of genes specific to neuronal GABAergic and glutamatergic cells.


Asunto(s)
Enfermedad de Huntington , Adulto , Humanos , Enfermedad de Huntington/patología , Filamentos Intermedios , Imagen por Resonancia Magnética , Mapeo Encefálico , Encéfalo/patología
11.
N Engl J Med ; 380(24): 2307-2316, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31059641

RESUMEN

BACKGROUND: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS: Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS: Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).


Asunto(s)
Proteína Huntingtina/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Nucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Proteína Huntingtina/genética , Inyecciones Espinales , Masculino , Persona de Mediana Edad , Mutación , Nucleótidos/síntesis química , Oligonucleótidos/líquido cefalorraquídeo
12.
Mov Disord ; 37(11): 2194-2196, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35686970

RESUMEN

"On Chorea" by George Huntington was published on April 13, 1872, in The Medical and Surgical Reporter of Philadelphia. Despite being a milestone in the recognition of the disease that later would bear his name, some myths and curiosities continue to surround the history of this publication and its author. In this History, the authors pay tribute to the 150th anniversary of the publication of this iconic article. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Enfermedad de Huntington , Trastornos del Movimiento , Humanos
13.
Mov Disord ; 37(1): 25-35, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842303

RESUMEN

BACKGROUND: Huntington's disease (HD) is a rare neurodegenerative disorder with protean clinical manifestations. Its management is challenging, consisting mainly of off-label treatments. OBJECTIVES: The International Parkinson and Movement Disorder Society commissioned a task force to review and evaluate the evidence of available therapies for HD gene expansion carriers. METHODS: We followed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Eligible randomized controlled trials were identified via an electronic search of the CENTRAL, MEDLINE, and EMBASE databases. All eligible trials that evaluated one or more of 33 predetermined clinical questions were included. Risk of bias was evaluated using the Cochrane Risk of Bias tool. A framework was adapted to allow for efficacy and safety conclusions to be drawn from the balance between the GRADE level of evidence and the importance of the benefit/harm of the intervention. RESULTS: Twenty-two eligible studies involving 17 interventions were included, providing data to address 8 clinical questions. These data supported a likely effect of deutetrabenazine on motor impairment, chorea, and dystonia and of tetrabenazine on chorea. The data did not support a disease-modifying effect for premanifest and manifest HD. There was no eligible evidence to support the use of specific treatments for depression, psychosis, irritability, apathy, or suicidality. Similarly, no evidence was eligible to support the use of physiotherapy, occupational therapy, exercise, dietary, or surgical treatments. CONCLUSIONS: Data for therapeutic interventions in HD are limited and support only the use of VMAT2 inhibitors for specific motor symptoms. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Apatía , Corea , Enfermedad de Huntington , Trastornos del Movimiento , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/terapia , Trastornos del Movimiento/tratamiento farmacológico , Tetrabenazina/uso terapéutico
14.
Neurol Sci ; 43(1): 379-385, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33974169

RESUMEN

BACKGROUND: Cell nuclear architecture has been explored in cancer and laminopathies but not in neurodegenerative disorders. Huntington's disease (HD) is a neurodegenerative disorder that leads to neuronal death. Chromosome-wide changes in gene expression have been reported in HD, not only in the brain but also in peripheral blood cells, but whether this translates into nuclear and chromosome architecture alterations has not yet been studied. METHODS: We investigate nuclear structure and chromosome organization in HD blood cells using fluorescence in situ hybridization in ultrathin cryosections (cryoFISH), coupled with machine learning image analysis to evaluate size, distribution, and morphology of nuclei and chromosomes. Four chromosomes were analyzed based on up- or downregulation of gene expression in HD. RESULTS: We show that blood cells from HD patients display increased nuclear size and filamentary shape, increased size of gene-rich chromosome 19, decreased filamentary shape of gene-rich chromosome 22, and a more radially centralized position for chromosome 19, whereas chromosomes 4 and 5 do not show detectable differences. CONCLUSIONS: We identify gross changes in nuclear architecture and chromosome organization associated with HD in blood. This adds a new layer of information onto disrupting mechanisms in HD and increases the potential of using blood to survey HD.


Asunto(s)
Enfermedad de Huntington , Células Sanguíneas , Encéfalo , Expresión Génica , Humanos , Enfermedad de Huntington/genética , Hibridación Fluorescente in Situ
15.
Hum Mol Genet ; 28(4): 650-661, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30358836

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene. CAG repeat length explains around half of the variation in age at onset (AAO) but genetic variation elsewhere in the genome accounts for a significant proportion of the remainder. Genome-wide association studies have identified a bidirectional signal on chromosome 15, likely underlain by FANCD2- and FANCI-associated nuclease 1 (FAN1), a nuclease involved in DNA interstrand cross link repair. Here we show that increased FAN1 expression is significantly associated with delayed AAO and slower progression of HD, suggesting FAN1 is protective in the context of an expanded HTT CAG repeat. FAN1 overexpression in human cells reduces CAG repeat expansion in exogenously expressed mutant HTT exon 1, and in patient-derived stem cells and differentiated medium spiny neurons, FAN1 knockdown increases CAG repeat expansion. The stabilizing effects are FAN1 concentration and CAG repeat length-dependent. We show that FAN1 binds to the expanded HTT CAG repeat DNA and its nuclease activity is not required for protection against CAG repeat expansion. These data shed new mechanistic insights into how the genetic modifiers of HD act to alter disease progression and show that FAN1 affects somatic expansion of the CAG repeat through a nuclease-independent mechanism. This provides new avenues for therapeutic interventions in HD and potentially other triplet repeat disorders.


Asunto(s)
Exodesoxirribonucleasas/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Transcriptoma/genética , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endodesoxirribonucleasas , Exones/genética , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Huntington/patología , Ratones , Enzimas Multifuncionales , Neuronas/metabolismo , Neuronas/patología , Expansión de Repetición de Trinucleótido/genética
17.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34272784

RESUMEN

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Asunto(s)
Corteza Cerebral , Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Expresión Génica/fisiología , Vaina de Mielina , Red Nerviosa , Sustancia Blanca , Adulto , Atlas como Asunto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
18.
J Neuroinflammation ; 18(1): 94, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874957

RESUMEN

BACKGROUND: Neuroinflammation may contribute to the pathogenesis of Huntington's disease, given evidence of activated microglia and elevated levels of inflammatory molecules in disease gene carriers, even those many years from symptom onset. We have shown previously that monocytes from Huntington's disease patients are hyper-reactive to stimulation in a manner dependent on their autonomous expression of the disease-causing mutant HTT protein. To date, however, whether human microglia are similarly hyper-responsive in a cell-autonomous manner has not been determined. METHODS: Microglial-like cells were derived from human pluripotent stem cells (PSCs) expressing mutant HTT containing varying polyglutamine lengths. These included lines that are otherwise isogenic, such that any observed differences can be attributed with certainty to the disease mutation itself. Analyses by quantitative PCR and immunofluorescence microscopy respectively of key genes and protein markers were undertaken to determine whether Huntington's disease PSCs differentiated normally to a microglial fate. The resultant cultures and their supernatants were then assessed by various biochemical assays and multiplex ELISAs for viability and responses to stimulation, including the release of pro-inflammatory cytokines and reactive oxygen species. Conditioned media were applied to PSC-derived striatal neurons, and vice versa, to determine the effects that the secretomes of each cell type might have on the other. RESULTS: Human PSCs generated microglia successfully irrespective of the expression of mutant HTT. These cells, however, were hyper-reactive to stimulation in the production of pro-inflammatory cytokines such as IL-6 and TNFα. They also released elevated levels of reactive oxygen species that have neurotoxic potential. Accompanying such phenotypes, human Huntington's disease PSC-derived microglia showed increased levels of apoptosis and were more susceptible to exogenous stress. Such stress appeared to be induced by supernatants from human PSC-derived striatal neurons expressing mutant HTT with a long polyglutamine tract. CONCLUSIONS: These studies show, for the first time, that human Huntington's disease PSC-derived microglia are hyper-reactive due to their autonomous expression of mutant HTT. This provides a cellular basis for the contribution that neuroinflammation might make to Huntington's disease pathogenesis.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Microglía/metabolismo , Microglía/patología , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Línea Celular , Cuerpo Estriado/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Mutación , Neuronas/metabolismo
19.
Ann Neurol ; 87(5): 751-762, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32105364

RESUMEN

OBJECTIVE: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. METHODS: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. RESULTS: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. INTERPRETATION: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trials. ANN NEUROL 2020;87:751-762.


Asunto(s)
Enfermedad de Huntington/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Adulto , Ensayos Clínicos como Asunto , Femenino , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Estudios Observacionales como Asunto , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA