Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(44): 24035-24051, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874670

RESUMEN

Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol). In this study, we validated a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets by elucidating structural features and physicochemical properties for drug-like cyclic peptides and developing library technologies to afford highly N-alkylated cyclic peptide hits. We discovered a KRAS inhibitory clinical compound (LUNA18) as the first example of our platform technology.


Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/química
2.
J Pharmacol Exp Ther ; 387(2): 135-149, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37142442

RESUMEN

Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.


Asunto(s)
Transportadores de Anión Orgánico , Rifampin , Humanos , Ratones , Animales , Rifampin/farmacología , Rifampin/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Bilis , Transportadores de Anión Orgánico/metabolismo
3.
Pharm Res ; 38(6): 1031-1039, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009624

RESUMEN

PURPOSE: The purpose of this research is to analyze non-linear pharmacokinetics of P-glycoprotein (P-gp) substrates in a cell based assay of a microfluidic device, which might be affected by hydrodynamic barrier (unstirred water layer, UWL). RESULTS: Apparent permeability (Papp) were obtained using non-P-gp substrates (propranolol, metoprolol, and atenolol) and P-gp substrates (quinidine and talinolol) in a commercially available microfluidic device, organoplate ® of Caco-2 cell based assay. The previous UWL resistance model was well fitted to Papp of static and flow condition by assuming UWL including and negligible condition, while P-gp substrates of higher passive permeability (quinidine) was apart from the fitting curve. The concentration dependent non-linear kinetics of P-gp substrates, quinidine and talinolol, was more analyzed in detail, and apparent Vmax discrepancy between static and flow assay condition in the quinidine assay was observed, while that was not observed in talinolol, the lower permeable substrate. Based on the experimental results, a mathematical model for P-gp substrates including UWL compartment on the previous 3-compartment model was developed, and it indicated that the apparent Vmax was variable along with the ratio between passive permeability and UWL permeability. CONCLUSIONS: The mathematical model adding UWL compartment well explained non-linear pharmacokinetics of apparent permeability of P-gp substrate in the microfluidic device. The model also has a potential to be applied to P-gp substrate permeability analysis in vivo.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacocinética , Dispositivos Laboratorio en un Chip , Modelos Teóricos , Dinámicas no Lineales , Agua/metabolismo , Células CACO-2 , Relación Dosis-Respuesta a Droga , Humanos , Propanolaminas/farmacocinética , Propranolol/farmacocinética , Especificidad por Sustrato/fisiología
4.
J Immunol ; 195(7): 3198-205, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320252

RESUMEN

Fc engineering can modulate the Fc-FcγR interaction and thus enhance the potency of Abs that target membrane-bound Ags, but it has not been applied to Abs that target soluble Ags. In this study, we revealed a previously unknown function of inhibitory FcγRII in vivo and, using an Ab that binds to Ag pH dependently, demonstrated that the function can be exploited to target soluble Ag. Because pH-dependent Ab dissociates Ag in acidic endosome, its Ag clearance from circulation reflects the cellular uptake rate of Ag/Ab complexes. In vivo studies showed that FcγR but not neonatal FcR contributes to Ag clearance by the pH-dependent Ab, and when Fc binding to mouse FcγRII and III was increased, Ag clearance was markedly accelerated in wild-type mice and FcR γ-chain knockout mice, but the effect was diminished in FcγRII knockout mice. This demonstrates that mouse FcγRII efficiently promotes Ab uptake into the cell and its subsequent recycling back to the cell surface. Furthermore, when a human IgG1 Fc variant with selectively increased binding to human FcγRIIb was tested in human FcγRIIb transgenic mice, Ag clearance was accelerated without compromising the Ab half-life. Taken together, inhibitory FcγRIIb was found to play a prominent role in the cellular uptake of monomeric Ag/Ab immune complexes in vivo, and when the Fc of a pH-dependent Ab was engineered to selectively enhance human FcγRIIb binding, the Ab could accelerate soluble Ag clearance from circulation. We assume such a function would enhance the therapeutic potency of Abs that target soluble Ags.


Asunto(s)
Complejo Antígeno-Anticuerpo/sangre , Reacciones Antígeno-Anticuerpo/inmunología , Antígenos/sangre , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Antígenos/inmunología , Humanos , Inmunoglobulina G/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgG/genética
5.
Xenobiotica ; 47(3): 194-201, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27151820

RESUMEN

1. The number of developed therapeutic monoclonal antibodies (mAbs) has increased in this decade. This study aims to predict their pharmacokinetic profiles after intravenous (iv) injection using only the data taken after subcutaneous (sc) injection in cynomolgus monkey. 2. Two-compartment model parameters, Q, Vc and Vp, were collected from the published data after iv injection in cynomolgus monkey for 21 mAbs (Group A). Bioavailability after sc injection (F), CL and serum/plasma concentration after iv injection of other published 19 mAbs (Group B) were predicted using the estimated geometric means of Q, Vc and Vp in Group A and the serum/plasma concentration after sc injection in Group B. 3. F and CL of 18 out of 19 mAbs in Group B were successfully predicted within 30% difference of observed value. Moreover, most of the observed serum/plasma concentrations after iv injection of mAbs in Group B were successfully predicted within 2-fold difference. Our approach suggests that iv injection might not be required to evaluate absorption of mAbs after sc injection in cynomolgus monkey. Therefore, our approach might reduce the time and cost of drug development, reduce the burden on resources, and also contribute to animal welfare.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Inyecciones Intravenosas , Inyecciones Subcutáneas , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Disponibilidad Biológica , Humanos , Macaca fascicularis , Modelos Biológicos
6.
Xenobiotica ; 44(12): 1127-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25030041

RESUMEN

1. For drug discovery, useful screening tools are essential to select superior candidates. Here, we evaluated the applicability of transgenic mice expressing human neonatal Fc receptor (FcRn) (hFcRn Tgm) as a pharmacokinetic screening tool of therapeutic monoclonal antibodies (mAbs) and Fc-fusion proteins that overcomes the species difference in FcRn binding. 2. Marketed 11 mAbs and 2 Fc-fusion proteins were intravenously administered to hFcRn Tgm and WT mice. The half-lives in hFcRn Tgm and WT mice were compared with those in human obtained from literature. The linear half-lives in human and monkey were also calculated by nonlinear pharmacokinetic analysis. For comparison, correlations of half-lives between monkey and human were also evaluated. 3. The half-lives of mAbs and Fc-fusion proteins after intravenous administration ranged from 1.1 to 13.2 days in hFcRn Tgm and from 1.2 to 30.3 days in WT mice. The half-lives in human correlated more closely with those in hFcRn Tgm than in WT mice and monkey. 4. Our results suggest that hFcRn Tgm are a valuable and useful tool for pharmacokinetic screening of mAbs and Fc-fusion proteins in the preclinical stage. Furthermore, we believe that hFcRn Tgm are broadly applicable to preclinical pharmacokinetic screening of mAbs-based therapeutics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores Fc/metabolismo , Animales , Haplorrinos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones , Ratones Transgénicos , Unión Proteica , Receptores Fc/genética , Receptores Fc/inmunología , Proteínas Recombinantes , Especificidad de la Especie
7.
Br J Pharmacol ; 181(7): 1091-1106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37872109

RESUMEN

BACKGROUND AND PURPOSE: Fraction metabolized (fm ) and fraction transported (ft ) are important for understanding drug-drug interactions (DDIs) in drug discovery and development. However, current in vitro systems cannot accurately estimate in vivo fm due to inability to reflect the ft by efflux transporters (ft,efflux ). This study demonstrates how CYP3A-mediated DDI for CYP3A/P-gp substrates can be predicted using Hu-PXB mice as human liver chimeric mice. EXPERIMENTAL APPROACH: For estimating human in vitro fm by CYP3A enzyme (fm,CYP3A,in vitro ), six drugs, including CYP3A/P-gp substrates (alprazolam, cyclosporine, docetaxel, midazolam, prednisolone, and theophylline) and human hepatocytes were incubated with or without ketoconazole as a CYP3A inhibitor. We calculated fm,CYP3A,in vitro based on hepatic intrinsic clearance. To estimate human in vivo fm,CYP3A (fm,CYP3A,in vivo ), we collected information on clinical DDI caused by ketoconazole for these six drugs. We calculated fm,CYP3A,in vivo using the change of total clearance (CLtotal ). For evaluating the human DDI predictability, the six drugs were administered intravenously to Hu-PXB and SCID mice with or without ketoconazole. We calculated the change of CLtotal caused by ketoconazole. We compared the CLtotal change in humans with that in Hu-PXB and SCID mice. KEY RESULTS: The fm,CYP3A,in vitro was overestimated compared to the fm,CYP3A,in vivo . Hu-PXB mice showed much better correlation in the change of CLtotal with humans (R2 = 0.95) compared to SCID mice (R2 = 0.0058). CONCLUSIONS AND IMPLICATIONS: CYP3A-mediated DDI can be predicted by correctly estimating human fm,CYP3A,in vivo using Hu-PXB mice. These mice could be useful predicting hepatic fm and ft,efflux .


Asunto(s)
Citocromo P-450 CYP3A , Cetoconazol , Humanos , Ratones , Animales , Citocromo P-450 CYP3A/metabolismo , Cetoconazol/metabolismo , Ratones SCID , Hígado/metabolismo , Interacciones Farmacológicas
8.
BioDrugs ; 37(1): 99-108, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36449140

RESUMEN

INTRODUCTION: Recently, increasing FcRn binding by Fc engineering has become a promising approach for prolonging the half-life of therapeutic monoclonal antibodies (mAbs). This study is the first to investigate the optimization of an allometric scaling approach for engineered mAbs based on cynomolgus monkey data to predict human pharmacokinetics. METHODS: Linear two-compartmental model parameters (clearance [CL]; volume of distribution in the central compartment [Vc]; inter-compartmental clearance [Q]; volume of distribution in the peripheral compartment [Vp]) after the intravenous (IV) injection of engineered mAbs (M252Y/S254T/T256E or M428L/N434S mutations) in cynomolgus monkeys and humans were collected from published data. We explored the optimal exponent for allometric scaling to predict parameters in humans based on cynomolgus monkey data. Moreover, the plasma concentration-time profile of engineered mAbs after IV injection in humans was predicted using parameters estimated based on an optimized exponent. RESULTS: For engineered mAbs, a significant positive correlation between cynomolgus monkeys and humans was observed for CL, but not for other parameters. Whereas conventional exponents (CL: 0.8, Q: 0.75, Vc: 1.0, Vp: 0.95) previously established for normal mAbs showed poor prediction accuracy for CL and Q of engineered mAbs, the newly optimized exponents (CL: 0.55, Q: 0.6, Vc: 0.95, Vp: 0.95) achieved superior predictability for engineered mAbs. Moreover, the optimized exponents accurately predicted plasma mAb concentration-time profiles after IV injection of engineered mAbs in humans. CONCLUSIONS: We found that engineered mAbs require specially optimized exponents to accurately predict pharmacokinetic parameters and plasma concentration-time profiles after IV injections in humans based on cynomolgus monkey data. This optimized approach can contribute to a more accurate prediction of human pharmacokinetics in the development of engineered mAbs.


Asunto(s)
Anticuerpos Monoclonales , Animales , Humanos , Anticuerpos Monoclonales/farmacocinética , Macaca fascicularis , Mutación , Inyecciones Intravenosas
9.
Drug Metab Pharmacokinet ; 53: 100506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38029470

RESUMEN

We previously reported that monoclonal antibodies (mAbs) with a high isoelectric point (pI) value tended to exhibit fast plasma clearance (CL) and large steady-state volume of distribution (Vdss) in mice. However, the positive correlation between pI, CL, and Vdss cannot be described by the reported physiologically based pharmacokinetic (PBPK) models, in which FcRn-mediated transcytosis of mAbs is set to be minimal compared to convection-mediated transport. To address this issue, physiological parameters (lymph flow rate, reflection coefficient, endothelial uptake clearance, and FcRn concentration) were optimized based on the pharmacokinetic profiles of mAbs with various pI values in wild type and FcRn-deficient (beta-2-microglobulin knockout [KO]) mice. Simulations using the PBPK model developed in this study showed a positive correlation between pI, CL and Vdss observed in wild-type mice. Therefore, this model successfully characterized our hypothetical mechanism that an electrostatic positive interaction between mAbs and the endothelial membrane enhances FcRn-mediated transcytosis of mAbs, resulting in large Vdss. We sought to determine the right contribution of the two pathways of antibody distribution to the interstitial space and established a new model that could effectively capture the effect of pI on FcRn-mediated distribution of mAbs in the body.


Asunto(s)
Anticuerpos Monoclonales , Modelos Biológicos , Ratones , Animales , Anticuerpos Monoclonales/farmacocinética , Transporte Biológico , Cinética , Ratones Noqueados , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo
10.
Pharm Res ; 29(3): 651-68, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21913031

RESUMEN

PURPOSE: CYP3A4 and P-glycoprotein (P-gp) are present in the human intestine and mediate intestinal first-pass metabolism and the efflux of oral drugs, respectively. We aimed to predict whether intestinal CYP3A4/P-gp is saturated in a therapeutic dose range. METHODS: Information on the Michaelis-Menten constant (Km), product of the fraction absorbed (Fa) and intestinal availability (Fg) (FaFg) of CYP3A4/P-gp substrates, and clinical AUC data including two or more different dosages for each CYP3A4/P-gp substrate was collected. The relationship between dose-normalized AUC and dose/Km value, termed the linearity index (LIN), was analyzed. RESULTS: Among 38 CYP3A4 and/or P-gp substrates, 16 substrates exhibited nonlinear pharmacokinetics and 22 substrates exhibited linear pharmacokinetics. Substrates with a small LIN tended to exhibit linear pharmacokinetics. The smallest LIN values of a substrate that exhibited nonlinear pharmacokinetics were 2.8 and 0.77 L for CYP3A4 and P-gp substrates, respectively. A decision tree for predicting nonlinear pharmacokinetics of CYP3A4/P-gp substrates based on LIN and FaFg of drugs was proposed. This decision tree correctly predicted linearity or nonlinearity for 24 of 29 drugs. CONCLUSIONS: LIN is useful for predicting CYP3A4/P-gp-mediated nonlinearity in intestinal absorption process in humans.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Absorción Intestinal , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Área Bajo la Curva , Árboles de Decisión , Humanos
11.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35631335

RESUMEN

Therapeutic monoclonal antibodies (mAbs) have been a promising therapeutic approach for several diseases and a wide variety of mAbs are being evaluated in clinical trials. To accelerate clinical development and improve the probability of success, pharmacokinetics and pharmacodynamics (PKPD) in humans must be predicted before clinical trials can begin. Traditionally, empirical-approach-based PKPD prediction has been applied for a long time. Recently, modeling and simulation (M&S) methods have also become valuable for quantitatively predicting PKPD in humans. Although several models (e.g., the compartment model, Michaelis-Menten model, target-mediated drug disposition model, and physiologically based pharmacokinetic model) have been established and used to predict the PKPD of mAbs in humans, more complex mechanistic models, such as the quantitative systemics pharmacology model, have been recently developed. This review summarizes the recent advances and future direction of M&S-based approaches to the quantitative prediction of human PKPD for mAbs.

12.
MAbs ; 14(1): 2068213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482905

RESUMEN

A conventional antibody targeting a soluble antigen in circulation typically requires a huge dosage and frequent intravenous administration to neutralize the antigen. This is because antigen degradation is reduced by the formation of antigen-antibody immune complexes, which escape from lysosomal degradation using neonatal Fc receptor (FcRn)-mediated recycling. To address this, we developed an antigen-sweeping antibody that combines pH-dependent antigen binding and Fc engineering to enhance Fc receptor binding. The sweeping antibody actively eliminates the plasma antigens by increasing the cellular uptake of the immune complex and dissociating the antigens in the acidic endosome for degradation. Strong antigen sweeping can reduce the dosage, potentially achieve higher efficacy, and expand the scope of antigen space available for targeting by antibodies. In this study, to further improve the sweeping efficacy, we developed a novel antibody Fc variant by enhancing Fcγ receptor IIb (FcγRIIb) binding and modulating charge characteristics for increased cellular uptake of the immune complex, together with enhancing FcRn binding for efficient salvage of the antigen-free antibodies. Our Fc variant achieved strong antigen sweeping in cynomolgus monkeys with antibody pharmacokinetics comparable to a wild-type human IgG1 antibody. The positive-charge substitutions enhanced uptake of the immune complex by FcγRIIb-expressing cells in vitro, which was completely inhibited by an anti-FcγRIIb antibody. This suggests that the strong in vivo sweeping efficacy improved by the charge engineering is more likely achieved by FcγRIIb-dependent uptake of the immune complex rather than nonspecific uptake. We expect this novel Fc engineering can maximize the antigen sweeping efficacy even in humans and create novel therapeutic antibodies that meet unmet medical needs for patients.


Asunto(s)
Complejo Antígeno-Anticuerpo , Antígenos , Animales , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fc de Inmunoglobulinas , Macaca fascicularis
13.
Clin Pharmacokinet ; 60(1): 111-120, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779124

RESUMEN

BACKGROUND AND OBJECTIVE: The subcutaneous injection of therapeutic monoclonal antibodies is increasingly used in the treatment of several diseases because of its convenience. Thus, a simple and accurate method of predicting the pharmacokinetics of monoclonal antibodies after a subcutaneous injection in humans would be a valuable tool for preclinical/clinical development. In this study, we investigated whether the pharmacokinetics of monoclonal antibodies after a subcutaneous injection in humans can be predicted using only pharmacokinetic data after a subcutaneous injection in cynomolgus monkeys. METHODS: First, we compared the accuracy of three approaches to predict the apparent clearance (CL/F) and apparent volume of distribution (Vd/F) for 15 monoclonal antibodies in humans (1) allometric scaling from cynomolgus monkeys; (2) geometric mean of reported values in humans; (3) estimation from a regression line based on CL/F in humans [only Vd/F]). Then, using the predicted CL/F and Vd/F, and the geometric mean of reported absorption rate constant of mAbs the plasma concentration-time profiles of 13 monoclonal antibodies after subcutaneous injections in humans were simulated. RESULTS: In a comparison of approaches, the first approach showed the best prediction accuracy for CL/F with an exponent of 0.9 (100% and 73% prediction accuracy within 2- and 1.5-fold of the observed value),and the third approach was the best for Vd/F (100% prediction accuracy within 1.5-fold of the observed value). Next, using the first approach for CL/F and the third approach for Vd/F, we accurately predicted the plasma concentration-time profiles of 13 monoclonal antibodies after subcutaneous injections in humans. CONCLUSION: This simple approach can be applied in preclinical and clinical settings to predict the pharmacokinetics of monoclonal antibodies after subcutaneous injections in humans. Further, this approach requires only CL/F after a subcutaneous injection in cynomolgus monkeys, contributing to animal welfare and reducing costs.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacocinética , Humanos , Inyecciones Subcutáneas , Macaca fascicularis , Modelos Biológicos , Farmacocinética
14.
Clin Pharmacokinet ; 60(10): 1325-1334, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33954956

RESUMEN

INTRODUCTION: Theoretically, the separate estimation of clearance (CL) and bioavailability (F) requires both intravenous and extravascular injection data. This study investigated whether CL and subcutaneous F of therapeutic monoclonal antibodies (mAbs) in humans can be separately estimated from subcutaneous injection data only. METHODS: First, the geometric mean of linear pharmacokinetic parameters (CL, intercompartmental CL [Q], volume of distribution in the central compartment [Vc], and volume of distribution in the peripheral compartment [Vp]) after intravenous injection for mAbs in humans that have been reported in public data sources was estimated from 103 mAbs with linear pharmacokinetics and 44 mAbs with nonlinear pharmacokinetics. Next, we estimated the CL and F of 25 mAbs with linear pharmacokinetics from plasma/serum mAb concentration-time profiles after subcutaneous injection in humans by fixing the geometric mean of Q, Vc, and Vp based on the public data. Moreover, the plasma/serum concentration-time profile of 25 mAbs after intravenous injection was simulated using the estimated CL and the geometric mean of Q, Vc, and Vp. RESULTS: There were no significant differences in parameters among subclasses (immunoglobulin [Ig] G1, 2, and 4) or in linearity (derivation from linear and nonlinear pharmacokinetics). Using only subcutaneous injection data, we successfully estimated the CL of 23/25 mAbs (92%) and F of all 25 mAbs (100%) within 1.5-fold of the observed value. Moreover, overall, the simulated concentration-time profiles were largely consistent with observed data (90.8% within 1.5-fold of the observed values). CONCLUSIONS: This approach does not require intravenous injection data to separately estimate CL and F after subcutaneous injection in humans and can therefore accelerate the clinical development of mAbs.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Disponibilidad Biológica , Humanos , Inyecciones Subcutáneas , Modelos Biológicos
15.
AAPS J ; 23(1): 21, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33415498

RESUMEN

SKY59 or RO7112689 is a humanized monoclonal antibody against complement protein C5 with pH-dependent C5-binding and neonatal Fc receptor-mediated recycling capabilities, which result in long-lasting neutralization of C5. We developed and validated a novel total drug assay for quantification of target-binding competent SKY59 in the presence of endogenous C5 in cynomolgus monkey plasma. The target-binding competent SKY59 was determined after complex formation by the addition of recombinant monkey C5 using goat anti-human IgG-heavy chain monkey-adsorbed polyclonal antibody as a capture antibody and rabbit anti-C5 monoclonal antibody (mAb) non-competing with SKY59 for detection. The total SKY59 assay was shown to be accurate and precise over the range of 0.05-3.2 µg/mL as well as be tolerant to more than 400 µg/mL of C5 (~ 3000-fold molar excess of target). We also developed and validated a total C5 assay, confirmed selectivity and parallelism, and verified the utility of recombinant monkey C5 for the total C5 assay as well as the total SKY59 assay. Furthermore, we used these validated methods to measure SKY59 and C5 concentrations in cynomolgus monkey plasma samples in a toxicology study. This total drug assay can be applied not only to other antibody therapeutics against shed/soluble targets when a non-competing reagent mAb is available but also for clinical studies when a reagent mAb specific for engineered Fc region on a therapeutic mAb is available.


Asunto(s)
Anticuerpos Monoclonales Humanizados/sangre , Bioensayo/métodos , Complemento C5/antagonistas & inhibidores , Monitoreo de Drogas/métodos , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacocinética , Complemento C5/análisis , Complemento C5/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Antígenos de Histocompatibilidad Clase I/metabolismo , Inyecciones Intravenosas , Inyecciones Subcutáneas , Límite de Detección , Macaca fascicularis , Masculino , Modelos Animales , Receptores Fc/metabolismo , Proteínas Recombinantes/metabolismo
16.
Br J Pharmacol ; 178(21): 4335-4351, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34232502

RESUMEN

BACKGROUND AND PURPOSE: P-glycoprotein (P-gp) exhibits a broad substrate specificity and affects pharmacokinetics, especially intestinal absorption. However, prediction, in vivo, of P-gp-mediated drug-drug interaction (DDI) and non-linear absorption at the preclinical stage, is challenging. Here we evaluate the use of human MDR1 mouse artificial chromosome (hMDR1-MAC) mice carrying human P-gp and lacking their own murine P-gp to quantitatively predict human P-gp-mediated DDI and non-linear absorption. EXPERIMENTAL APPROACH: The P-gp substrates (aliskiren, betrixaban, celiprolol, digoxin, fexofenadine and talinolol) were administered orally to wild-type, Mdr1a/b-knockout (KO) and hMDR1-MAC mice, and their plasma concentrations were measured. We calculated the ratio of area under the curve (AUCR) in mice (AUCMdr1a/b-KO /AUCwild-type or AUCMdr1a/b-KO /AUChMDR1-MAC ) estimated as attributable to complete P-gp inhibition and the human AUCR with and without P-gp inhibitor administration. The correlations of AUCRhuman with AUCRwild-type and AUCRhMDR1-MAC were investigated. For aliskiren, betrixaban and celiprolol, the Km and Vmax values for P-gp in hMDR1-MAC mice and humans were optimized from different dosing studies using GastroPlus. The correlations of Km and Vmax for P-gp between human and hMDR1-MAC mice were investigated. KEY RESULTS: A better correlation between AUCRhuman and AUCRhMDR1-MAC (R2 = 0.88) was observed. Moreover, good relationships of Km (R2 = 1.00) and Vmax (R2 = 0.98) for P-gp between humans and hMDR1-MAC mice were observed. CONCLUSIONS AND IMPLICATIONS: These results suggest that P-gp-mediated DDI and non-linear absorption can be predicted using hMDR1-MAC mice. These mice are a useful in vivo tool for quantitatively predicting P-gp-mediated disposition in drug discovery and development.


Asunto(s)
Absorción Intestinal , Preparaciones Farmacéuticas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Interacciones Farmacológicas , Ratones
17.
Cancer Discov ; 11(1): 158-175, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32847940

RESUMEN

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Adenosina Trifosfato , Neoplasias , Animales , Anticuerpos Monoclonales/farmacología , Antígenos de Neoplasias , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
18.
Pharm Res ; 27(3): 442-6, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20135207

RESUMEN

PURPOSE: Recently, it was reported that the apparent Michaelis-Menten constant (Km(app)) of a P-glycoprotein (P-gp) substrate, defined for the extracellular substrate concentration, increases as the P-gp expression level in the cell increases. By its nature, the Km value should not depend on the level of P-gp expression. The purpose of this study is to establish a model which can estimate the Km value independent of the P-gp expression level in cells. METHODS: The previously reported concentration-dependent permeability of verapamil, quinidine, and vinblastine in MDR1-MDCKII, P-gp-highly induced Caco-2, P-gp-induced Caco-2, normal Caco-2, and MDR1-knockdown Caco-2 cells data were analyzed using a model in which the Km value was defined for the intracellular substrate concentration. RESULTS: The estimated Km values defined for the substrate concentration inside the cells were almost the same among various cells with different levels of P-gp expression. The estimated Vmax values were approximately proportional to the P-gp expression level. CONCLUSION: The established kinetic model was found to be rational based on the results that the Km values of P-gp substrates were about the same for cells expressing various levels of P-gp, while the Vmax values were proportional to the expression levels of P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Quinidina/farmacocinética , Verapamilo/farmacocinética , Vinblastina/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Transporte Biológico , Células CACO-2 , Expresión Génica , Humanos , Modelos Biológicos
19.
Drug Metab Pharmacokinet ; 34(1): 25-41, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30472066

RESUMEN

Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Ingeniería Biomédica/métodos , Receptores Fc/metabolismo , Animales , Anticuerpos Monoclonales/genética , Ingeniería Biomédica/tendencias , Vías de Administración de Medicamentos , Esquema de Medicación , Humanos , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Unión Proteica/fisiología , Receptores Fc/genética
20.
PLoS One ; 13(12): e0209509, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30592762

RESUMEN

Modulating the complement system is a promising strategy in drug discovery for disorders with uncontrolled complement activation. Although some of these disorders can be effectively treated with an antibody that inhibits complement C5, the high plasma concentration of C5 requires a huge dosage and frequent intravenous administration. Moreover, a conventional anti-C5 antibody can cause C5 to accumulate in plasma by reducing C5 clearance when C5 forms an immune complex (IC) with the antibody, which can be salvaged from endosomal vesicles by neonatal Fc receptor (FcRn)-mediated recycling. In order to neutralize the increased C5, an even higher dosage of the antibody would be required. This antigen accumulation can be suppressed by giving the antibody a pH-dependent C5-binding property so that C5 is released from the antibody in the acidic endosome and then trafficked to the lysosome for degradation, while the C5-free antibody returns back to plasma. We recently demonstrated that a pH-dependent C5-binding antibody, SKY59, exhibited long-lasting neutralization of C5 in cynomolgus monkeys, showing potential for subcutaneous delivery or less frequent administration. Here we report the details of the antibody engineering involved in generating SKY59, from humanizing a rabbit antibody to improving the C5-binding property. Moreover, because the pH-dependent C5-binding antibodies that we first generated still accumulated C5, we hypothesized that the surface charges of the ICs partially contributed to a slow uptake rate of the C5-antibody ICs. This idea motivated us to engineer the surface charges of the antibody. Our surface-charge engineered antibody consequently exhibited a high capacity to sweep C5 and suppressed the C5 accumulation in vivo by accelerating the cycle of sweeping: uptake of ICs into cells, release of C5 from the antibody in endosomes, and salvage of the antigen-free antibody. Thus, our engineered anti-C5 antibody, SKY59, is expected to provide significant benefits for patients with complement-mediated disorders.


Asunto(s)
Anticuerpos Monoclonales/genética , Activación de Complemento/efectos de los fármacos , Complemento C5/antagonistas & inhibidores , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Afinidad de Anticuerpos , Activación de Complemento/inmunología , Complemento C5/inmunología , Complemento C5/aislamiento & purificación , Simulación por Computador , Descubrimiento de Drogas/métodos , Endosomas/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Concentración de Iones de Hidrógeno , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/inmunología , Macaca fascicularis , Ratones , Ratones Transgénicos , Mutagénesis , Receptores Fc/genética , Receptores Fc/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA