Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
Dev Biol ; 477: 1-10, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984304

RESUMEN

Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula , Forma de la Célula , Animales , Apoptosis/fisiología , Fenómenos Biomecánicos , Competencia Celular , Homeostasis , Humanos , Células Madre/fisiología
3.
Proc Natl Acad Sci U S A ; 114(12): E2327-E2336, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270608

RESUMEN

Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.


Asunto(s)
Endocitosis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Epitelio/embriología , Epitelio/metabolismo , Transducción de Señal , Transformación Genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rab5/genética
4.
Development ; 142(22): 3933-42, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26428010

RESUMEN

The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Retina/embriología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Carbocianinas , Factores de Transcripción Forkhead , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Prosencéfalo/metabolismo
5.
EMBO Rep ; 15(2): 175-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24397932

RESUMEN

Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator γ-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity. Furthermore, hMsd1/SSX2IP is essential for ciliogenesis, and during zebrafish embryogenesis, knockdown of its orthologue results in ciliary defects and disturbs left-right asymmetry. We propose that the Msd1 family comprises conserved microtubule-anchoring proteins.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Huso Acromático/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Cilios/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Represoras/genética , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Nat Genet ; 39(6): 727-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17468754

RESUMEN

Jeune asphyxiating thoracic dystrophy, an autosomal recessive chondrodysplasia, often leads to death in infancy because of a severely constricted thoracic cage and respiratory insufficiency; retinal degeneration, cystic renal disease and polydactyly may be complicating features. We show that IFT80 mutations underlie a subset of Jeune asphyxiating thoracic dystrophy cases, establishing the first association of a defective intraflagellar transport (IFT) protein with human disease. Knockdown of ift80 in zebrafish resulted in cystic kidneys, and knockdown in Tetrahymena thermophila produced shortened or absent cilia.


Asunto(s)
Asfixia/genética , Enfermedades del Desarrollo Óseo/genética , Proteínas Portadoras/genética , Enfermedades Renales Quísticas/genética , Mutación/genética , Tetrahymena thermophila/genética , Enfermedades Torácicas/genética , Pez Cebra/genética , Animales , Femenino , Humanos , Recién Nacido , Masculino , Linaje , Polidactilia/genética , Tetrahymena thermophila/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo
7.
Dev Biol ; 385(1): 52-66, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24161849

RESUMEN

Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.


Asunto(s)
Actomiosina/metabolismo , Blastodermo/embriología , Dinaminas/metabolismo , Pez Cebra/embriología , Uniones Adherentes/metabolismo , Animales , Blastodermo/crecimiento & desarrollo , Diferenciación Celular , Proteínas del Citoesqueleto/metabolismo , Dinaminas/genética , Embrión no Mamífero/metabolismo , Endocitosis , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Morfogénesis , Fosforilación , Saco Vitelino , Pez Cebra/genética , Quinasas Asociadas a rho/antagonistas & inhibidores
8.
Dev Biol ; 390(2): 231-46, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24662046

RESUMEN

The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface.


Asunto(s)
Evolución Biológica , Movimiento Celular/fisiología , Ectodermo/fisiología , Hipofaringe/embriología , Mesodermo/fisiología , Morfogénesis/fisiología , Vertebrados/embriología , Animales , Electroporación , Cabeza/anatomía & histología , Cabeza/embriología , Inmunohistoquímica , Hibridación in Situ , Microcirugia , Cresta Neural/fisiología , Especificidad de la Especie , Torso/anatomía & histología , Torso/embriología
9.
Development ; 139(21): 3897-904, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23048180

RESUMEN

Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.


Asunto(s)
Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Humanos , Xenopus laevis , Pez Cebra
10.
J Cell Sci ; 125(Pt 1): 59-66, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250205

RESUMEN

In Drosophila, normal and transformed cells compete with each other for survival in a process called cell competition. However, it is not known whether comparable phenomena also occur in mammals. Scribble is a tumor suppressor protein in Drosophila and mammals. In this study we examine the interface between normal and Scribble-knockdown epithelial cells using Madin-Darby Canine Kidney (MDCK) cells expressing Scribble short hairpin RNA (shRNA) in a tetracycline-inducible manner. We observe that Scribble-knockdown cells undergo apoptosis and are apically extruded from the epithelium when surrounded by normal cells. Apoptosis does not occur when Scribble-knockdown cells are cultured alone, suggesting that the presence of surrounding normal cells induces the cell death. We also show that death of Scribble-knockdown cells occurs independently of apical extrusion. Finally, we demonstrate that apoptosis of Scribble-knockdown cells depends on activation of p38 mitogen-activated protein kinase (MAPK). This is the first demonstration that an oncogenic transformation within an epithelium induces cell competition in a mammalian cell culture system.


Asunto(s)
Proteínas de Drosophila , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Animales , Apoptosis , Línea Celular , Polaridad Celular , Forma de la Célula , Perros , Activación Enzimática , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Development ; 138(10): 2121-32, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21521740

RESUMEN

The facial branchiomotor neurons (FBMNs) undergo a characteristic tangential migration in the vertebrate hindbrain. We previously used a morpholino knockdown approach to reveal that zebrafish prickle1b (pk1b) is required for this migration. Here we report that FBMN migration is also blocked in a pk1b mutant with a disruption in the consensus farnesylation motif. We confirmed that this lipid modification is required during FBMN migration by disrupting the function of farnesyl biosynthetic enzymes. Furthermore, farnesylation of a tagged Pk1b is required for its nuclear localization. Using a unique rescue approach, we have demonstrated that Pk1b nuclear localization and farnesylation are required during FBMN migration. Our data suggest that Pk1b acts at least partially independently of core planar cell polarity molecules at the plasma membrane, and might instead be acting at the nucleus. We also found that the neuronal transcriptional silencer REST is necessary for FBMN migration, and we provide evidence that interaction between Pk1b and REST is required during this process. Finally, we demonstrate that REST protein, which is normally localized in the nuclei of migrating FBMNs, is depleted from the nuclei of Pk1b-deficient neurons. We conclude that farnesylation-dependent nuclear localization of Pk1b is required to regulate REST localization and thus FBMN migration.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Movimiento Celular , Núcleo Celular/metabolismo , ADN Complementario/genética , Farnesiltransferasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas con Dominio LIM , Modelos Biológicos , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Neurogénesis , Prenilación de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
12.
PLoS Biol ; 9(2): e1001019, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21364967

RESUMEN

The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global cell movements across epithelia (such as during convergence extension), PCP signalling in interplay with TGFß signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endodermo/citología , Endodermo/metabolismo , Proteína Nodal/metabolismo , Fosfoproteínas/metabolismo , Vísceras/citología , Actinas/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular , Polaridad Celular , Forma de la Célula , Proteínas Dishevelled , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epitelio/metabolismo , Factores de Determinación Derecha-Izquierda/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Miosina Tipo IIA no Muscular/metabolismo , Transporte de Proteínas , Transducción de Señal , Vísceras/embriología , Proteína de la Zonula Occludens-1
13.
Nat Genet ; 37(10): 1135-40, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16170314

RESUMEN

The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.


Asunto(s)
Síndrome de Bardet-Biedl/patología , Proteínas Asociadas a Microtúbulos/genética , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Síndrome de Bardet-Biedl/genética , Polaridad Celular/genética , Cilios/química , Cóclea/patología , Células Epiteliales/química , Párpados/fisiopatología , Chaperoninas del Grupo II , Ratones , Ratones Mutantes , Mutación , Proteínas del Tejido Nervioso/análisis , Defectos del Tubo Neural/patología , Pez Cebra/genética , Pez Cebra/metabolismo
14.
Development ; 137(20): 3459-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20843857

RESUMEN

Organ formation requires the precise assembly of progenitor cells into a functional multicellular structure. Mechanical forces probably participate in this process but how they influence organ morphogenesis is still unclear. Here, we show that Wnt11- and Prickle1a-mediated planar cell polarity (PCP) signalling coordinates the formation of the zebrafish ciliated laterality organ (Kupffer's vesicle) by regulating adhesion properties between organ progenitor cells (the dorsal forerunner cells, DFCs). Combined inhibition of Wnt11 and Prickle1a reduces DFC cell-cell adhesion and impairs their compaction and arrangement during vesicle lumen formation. This leads to the formation of a mis-shapen vesicle with small fragmented lumina and shortened cilia, resulting in severely impaired organ function and, as a consequence, randomised laterality of both molecular and visceral asymmetries. Our results reveal a novel role for PCP-dependent cell adhesion in coordinating the supracellular organisation of progenitor cells during vertebrate laterality organ formation.


Asunto(s)
Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Embrión no Mamífero/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Epitelio/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Proteínas con Dominio LIM
15.
Nature ; 446(7137): 797-800, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17392791

RESUMEN

The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.


Asunto(s)
Tipificación del Cuerpo , Polaridad Celular , Células Epiteliales/citología , Sistema Nervioso/citología , Sistema Nervioso/embriología , Neuronas/citología , Pez Cebra/embriología , Animales , Proteínas Portadoras/metabolismo , División Celular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Proteínas de Pez Cebra/metabolismo
16.
J Cell Sci ; 123(Pt 2): 171-80, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20026643

RESUMEN

At the initial stage of carcinogenesis, transformation occurs in a single cell within an epithelial sheet. However, it remains unknown what happens at the boundary between normal and transformed cells. Using Madin-Darby canine kidney (MDCK) cells transformed with temperature-sensitive v-Src, we have examined the interface between normal and Src-transformed epithelial cells. We show that Src-transformed cells are apically extruded when surrounded by normal cells, but not when Src cells alone are cultured, suggesting that apical extrusion occurs in a cell-context-dependent manner. We also observe apical extrusion of Src-transformed cells in the enveloping layer of zebrafish gastrula embryos. When Src-transformed MDCK cells are surrounded by normal MDCK cells, myosin-II and focal adhesion kinase (FAK) are activated in Src cells, which further activate downstream mitogen-activated protein kinase (MAPK). Importantly, activation of these signalling pathways depends on the presence of surrounding normal cells and plays a crucial role in apical extrusion of Src cells. Collectively, these results indicate that interaction with surrounding normal epithelial cells influences the signalling pathways and behaviour of Src-transformed cells.


Asunto(s)
Comunicación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína Oncogénica pp60(v-src)/metabolismo , Transducción de Señal , Animales , Cadherinas/metabolismo , Adhesión Celular , Polaridad Celular , Perros , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo , Transporte de Proteínas , Pez Cebra/metabolismo , beta Catenina/metabolismo
17.
Dev Biol ; 345(2): 215-25, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20643117

RESUMEN

Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.


Asunto(s)
Tipificación del Cuerpo , Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cilios/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de la Membrana/genética , Proteínas de Pez Cebra/genética
18.
J Cell Biol ; 175(5): 791-802, 2006 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-17130287

RESUMEN

Wnt11 is a key signal, determining cell polarization and migration during vertebrate gastrulation. It is known that Wnt11 functionally interacts with several signaling components, the homologues of which control planar cell polarity in Drosophila melanogaster. Although in D. melanogaster these components are thought to polarize cells by asymmetrically localizing at the plasma membrane, it is not yet clear whether their subcellular localization plays a similarly important role in vertebrates. We show that in zebrafish embryonic cells, Wnt11 locally functions at the plasma membrane by accumulating its receptor, Frizzled 7, on adjacent sites of cell contacts. Wnt11-induced Frizzled 7 accumulations recruit the intracellular Wnt signaling mediator Dishevelled, as well as Wnt11 itself, and locally increase cell contact persistence. This increase in cell contact persistence is mediated by the local interaction of Wnt11, Frizzled 7, and the atypical cadherin Flamingo at the plasma membrane, and it does not require the activity of further downstream effectors of Wnt11 signaling, such as RhoA and Rok2. We propose that Wnt11, by interacting with Frizzled 7 and Flamingo, modulates local cell contact persistence to coordinate cell movements during gastrulation.


Asunto(s)
Comunicación Celular , Membrana Celular/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Adhesión Celular , Proteínas Dishevelled , Proteínas de Drosophila , Gástrula/citología , Gástrula/fisiología , Modelos Biológicos , Fosfoproteínas/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/metabolismo , Pez Cebra/fisiología
19.
Proc Natl Acad Sci U S A ; 105(18): 6714-9, 2008 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-18443298

RESUMEN

Facial recognition is central to the diagnosis of many syndromes, and craniofacial patterns may reflect common etiologies. In the pleiotropic Bardet-Biedl syndrome (BBS), a primary ciliopathy with intraflagellar transport dysfunction, patients have a characteristic facial "gestalt" that dysmorphologists have found difficult to characterize. Here, we use dense surface modeling (DSM) to reveal that BBS patients and mouse mutants have mid-facial defects involving homologous neural crest-derived structures shared by zebrafish morphants. These defects of the craniofacial (CF) skeleton arise from aberrant cranial neural crest cell (NCC) migration. These effects are not confined to the craniofacial region, but vagal-derived NCCs fail to populate the enteric nervous system, culminating in disordered gut motility. Furthermore, morphants display hallmarks of disrupted Sonic Hedgehog (Shh) signaling from which NCCs take positional cues. We propose a model whereby Bbs proteins modulate NCC migration, contributing to craniofacial morphogenesis and development of the enteric nervous system. These migration defects also explain the association of Hirschsprung's disease (HD) with BBS. Moreover, this is a previously undescribed method of using characterization of facial dysmorphology as a basis for investigating the pathomechanism of CF development in dysmorphic syndromes.


Asunto(s)
Síndrome de Bardet-Biedl/complicaciones , Movimiento Celular , Anomalías Craneofaciales/complicaciones , Enfermedad de Hirschsprung/complicaciones , Cresta Neural/patología , Animales , Síndrome de Bardet-Biedl/fisiopatología , Cilios/patología , Anomalías Craneofaciales/fisiopatología , Sistema Nervioso Entérico/fisiopatología , Motilidad Gastrointestinal , Proteínas Hedgehog/metabolismo , Enfermedad de Hirschsprung/fisiopatología , Humanos , Imagenología Tridimensional , Ratones , Mutación/genética , Células 3T3 NIH , Fenotipo , Transducción de Señal , Proteínas Wnt/metabolismo , Pez Cebra/anomalías , Proteínas de Pez Cebra/metabolismo
20.
Cell Rep ; 32(3): 107924, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697990

RESUMEN

Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.


Asunto(s)
Matriz Extracelular/metabolismo , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Actomiosina/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA