Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(34): e2208016119, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969770

RESUMEN

Phonons are known to generate a thermal Hall effect in certain insulators, including oxides with rare-earth impurities, quantum paraelectrics, multiferroic materials, and cuprate Mott insulators. In each case, a special feature of the material is presumed relevant for the underlying mechanism that confers chirality to phonons in a magnetic field. A fundamental question is whether a phonon Hall effect is an unusual occurrence-linked to special characteristics such as skew scattering off rare-earth impurities, structural domains, ferroelectricity, or ferromagnetism-or a much more common property of insulators than hitherto believed. To help answer this question, we have turned to a material with none of the previously encountered special features: the cubic antiferromagnet Cu3TeO6. We find that its thermal Hall conductivity [Formula: see text] is among the largest of any insulator so far. We show that this record-high [Formula: see text] signal is due to phonons, and it does not require the presence of magnetic order, as it persists above the ordering temperature. We conclude that the phonon Hall effect is likely to be a fairly common property of solids.

2.
Nat Mater ; 20(12): 1650-1656, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34413490

RESUMEN

Emergent relativistic quasiparticles in Weyl semimetals are the source of exotic electronic properties such as surface Fermi arcs, the anomalous Hall effect and negative magnetoresistance, all observed in real materials. Whereas these phenomena highlight the effect of Weyl fermions on the electronic transport properties, less is known about what collective phenomena they may support. Here, we report a Weyl semimetal, NdAlSi, that offers an example. Using neutron diffraction, we found a long-wavelength helical magnetic order in NdAlSi, the periodicity of which is linked to the nesting vector between two topologically non-trivial Fermi pockets, which we characterize using density functional theory and quantum oscillation measurements. We further show the chiral transverse component of the spin structure is promoted by bond-oriented Dzyaloshinskii-Moriya interactions associated with Weyl exchange processes. Our work provides a rare example of Weyl fermions driving collective magnetism.

3.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164130

RESUMEN

Nearly two decades ago, Alexei Kitaev proposed a model for spin-1/2 particles with bond-directional interactions on a two-dimensional honeycomb lattice which had the potential to host a quantum spin-liquid ground state. This work initiated numerous investigations to design and synthesize materials that would physically realize the Kitaev Hamiltonian. The first generation of such materials, such as Na2IrO3, α-Li2IrO3, and α-RuCl3, revealed the presence of non-Kitaev interactions such as the Heisenberg and off-diagonal exchange. Both physical pressure and chemical doping were used to tune the relative strength of the Kitaev and competing interactions; however, little progress was made towards achieving a purely Kitaev system. Here, we review the recent breakthrough in modifying Kitaev magnets via topochemical methods that has led to the second generation of Kitaev materials. We show how structural modifications due to the topotactic exchange reactions can alter the magnetic interactions in favor of a quantum spin-liquid phase.

4.
Inorg Chem ; 60(14): 10565-10571, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34176270

RESUMEN

Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquids, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner-sharing square-planar CuO4 units have been intensely studied due to their Mott insulating ground state, which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid-state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate, Cu3(TeO4)(SO4)·H2O, a promising alternative to layered perovskites. The orthorhombic phase (space group Pnma) is made of corrugated layers of corner-sharing CuO4 square-planar units that are edge-shared with TeO4 units. The layers are linked by slabs of corner-sharing CuO4 and SO4. Using both the bond valence sum analysis and magnetization data, we find purely Cu2+ ions within the layers but a mixed valence of Cu2+/Cu+ between the layers. Cu3(TeO4)(SO4)·H2O undergoes an antiferromagnetic transition at TN = 67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at T* = 12 K, evidenced by a kink in the heat capacity. The spin-canting transition is explained on the basis of a J1-J2 model of magnetic interactions, which is consistent with the slightly different in-plane superexchange paths. We present Cu3(TeO4)(SO4)·H2O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.

5.
Phys Rev Lett ; 123(23): 237203, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868481

RESUMEN

Kitaev magnets are materials with bond-dependent Ising interactions between localized spins on a honeycomb lattice. Such interactions could lead to a quantum spin-liquid (QSL) ground state at zero temperature. Recent theoretical studies suggest two potential signatures of a QSL at finite temperatures, namely, a scaling behavior of thermodynamic quantities in the presence of quenched disorder, and a two-step release of the magnetic entropy. Here, we present both signatures in Ag_{3}LiIr_{2}O_{6} which is synthesized from α-Li_{2}IrO_{3} by replacing the interlayer Li atoms with Ag atoms. In addition, the dc susceptibility data confirm the absence of a long-range order, and the ac susceptibility data rule out a spin-glass transition. These observations suggest a closer proximity to the QSL in Ag_{3}LiIr_{2}O_{6} compared to its parent compound α-Li_{2}IrO_{3} that orders at 15 K. We discuss an enhanced spin-orbit coupling due to a mixing between silver d and oxygen p orbitals as a potential underlying mechanism.

6.
Proc Natl Acad Sci U S A ; 113(25): E3475-81, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274081

RESUMEN

The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

7.
Inorg Chem ; 57(20): 12709-12717, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30272966

RESUMEN

This work presents an integrated approach to study the crystal chemistry and phonon heat capacity of complex layered oxides. Two quaternary delafossites are synthesized from ternary parent compounds and copper monohalides via a topochemical exchange reaction that preserves the honeycomb ordering of the parent structures. For each compound, Rietveld refinement of the powder X-ray diffraction patterns is examined in both monoclinic C2/ c and rhombohedral R3̅ m space groups. Honeycomb ordering occurs only in the monoclinic space group. Bragg peaks associated with honeycomb ordering acquire an asymmetric broadening known as the Warren line shape that is commonly observed in layered structures with stacking disorder. Detailed TEM analysis confirms honeycomb ordering within each layer in both title compounds and establishes a twinning between the adjacent layers instead of the more conventional shifting or skipping stacking faults. The structural model is then used to calculate phonon dispersions and heat capacity from first principles. In both compounds, the calculated heat capacity accurately describes the experimental data. The integrated approach presented here offers a platform to carefully analyze the phonon heat capacity in complex oxides where the crystal structure can produce magnetic frustration. Isolating phonon contribution from total heat capacity is a necessary and challenging step toward a quantitative study of spin liquid materials with exotic magnetic excitations such as spinons and Majorana fermions. A quantitative understanding of phonon density of states based on crystal chemistry as presented here also paves the way toward higher efficiency thermoelectric materials.

8.
J Am Chem Soc ; 139(43): 15371-15376, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981260

RESUMEN

We present the first copper iridium binary metal oxide with the chemical formula Cu2IrO3. The material is synthesized from the parent compound Na2IrO3 by a topotactic reaction where sodium is exchanged with copper under mild conditions. Cu2IrO3 has the same monoclinic space group (C2/c) as Na2IrO3 with a layered honeycomb structure. The parent compound Na2IrO3 is proposed to be relevant to the Kitaev spin liquid on the basis of having Ir4+ with an effective spin of 1/2 on a honeycomb lattice. Remarkably, whereas Na2IrO3 shows a long-range magnetic order at 15 K and fails to become a true spin liquid, Cu2IrO3 remains disordered until 2.7 K, at which point a short-range order develops. Rietveld analysis shows less distortions in the honeycomb structure of Cu2IrO3 with bond angles closer to 120° compared to Na2IrO3. Thus, the weak short-range magnetism combined with the nearly ideal honeycomb structure places Cu2IrO3 closer to a Kitaev spin liquid than its predecessors.

9.
Adv Mater ; 36(24): e2310944, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470991

RESUMEN

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering. Proving this idea, proposed by Peierls in 1932, requires tuning electron and phonon dispersions without changing symmetry, topology, or disorder. This is achieved by combining de Haas - van Alphen (dHvA), electron transport, Raman scattering, and first-principles calculations in the topological semimetals MX2 (M = Nb, Ta and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an order magnitude larger than single particle ones to nearly balanced. This occurs without changing the crystal structure or topology and with small differences in disorder or Fermi surface. Simultaneously, Raman scattering and first-principles calculations establish phonon-electron dominated scattering only in the MGe2 compounds. Thus, this study proves that phonon-drag is crucial to the transport properties of topological semimetals and provides insight to engineer these materials further.

10.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589414

RESUMEN

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

11.
Sci Adv ; 8(12): eabl5671, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319975

RESUMEN

Recent observations of novel spin-orbit coupled states have generated interest in 4d/5d transition metal systems. A prime example is the [Formula: see text] state in iridate materials and α-RuCl3 that drives Kitaev interactions. Here, by tuning the competition between spin-orbit interaction (λSOC) and trigonal crystal field (ΔT), we restructure the spin-orbital wave functions into a previously unobserved [Formula: see text] state that drives Ising interactions. This is done via a topochemical reaction that converts Li2RhO3 to Ag3LiRh2O6. Using perturbation theory, we present an explicit expression for the [Formula: see text] state in the limit ΔT ≫ λSOC realized in Ag3LiRh2O6, different from the conventional [Formula: see text] state in the limit λSOC ≫ ΔT realized in Li2RhO3. The change of ground state is followed by a marked change of magnetism from a 6 K spin-glass in Li2RhO3 to a 94 K antiferromagnet in Ag3LiRh2O6.

12.
Adv Mater ; 33(10): e2005755, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33511677

RESUMEN

Materials with strong magnetoresistive responses are the backbone of spintronic technology, magnetic sensors, and hard drives. Among them, manganese oxides with a mixed valence and a cubic perovskite structure stand out due to their colossal magnetoresistance (CMR). A double exchange interaction underlies the CMR in manganates, whereby charge transport is enhanced when the spins on neighboring Mn3+ and Mn4+ ions are parallel. Prior efforts to find different materials or mechanisms for CMR resulted in a much smaller effect. Here an enormous CMR at low temperatures in EuCd2 P2 without manganese, oxygen, mixed valence, or cubic perovskite structure is shown. EuCd2 P2 has a layered trigonal lattice and exhibits antiferromagnetic ordering at 11 K. The magnitude of CMR (104 %) in as-grown crystals of EuCd2 P2 rivals the magnitude in optimized thin films of manganates. The magnetization, transport, and synchrotron X-ray data suggest that strong magnetic fluctuations are responsible for this phenomenon. The realization of CMR at low temperatures without heterovalency leads to a new regime for materials and technologies related to antiferromagnetic spintronics.

13.
Nat Commun ; 12(1): 5292, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489411

RESUMEN

Whereas electron-phonon scattering relaxes the electron's momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2 with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.

14.
Sci Adv ; 6(30): eabb9379, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32832677

RESUMEN

Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground states. Chromium trihalides provided the first such example with a change of interlayer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer previously unknown ground states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the nonmagnetic ligand atoms (Cl, Br, I). We synthesize a three-halide series, CrCl3 - x - y Br x I y , and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl3. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of interlayer coupling in the bulk of CrCl3 - x - y Br x I y crystals at the same field as in the exfoliation experiments.

15.
Adv Mater ; 30(25): e1801325, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29719069

RESUMEN

Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy-a tendency of spins to align in a certain crystallographic direction known as easy-axis. In layered materials, two limits of easy-axis are in-plane (XY) and out-of-plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin-orbitronic functions. Here, a unique experiment is designed to control the easy-axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3-x Brx crystals between CrCl3 with XY and CrBr3 with Ising anisotropy. The easy-axis is controlled between the two limits by varying spin-orbit coupling with the Br content in CrCl3-x Brx . The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly with x. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA