Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 485(7398): 347-9, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22596158

RESUMEN

Liquid crystals are traditionally classified as thermotropic, lyotropic or polymeric, based on the stimulus that governs the organization and order of the molecular system. The most widely known and applied class of liquid crystals are a subset of thermotropic liquid crystals known as calamitic, in which adding heat can result in phase transitions from or into the nematic, cholesteric and smectic mesophases. Photoresponsive liquid-crystal materials and mixtures can undergo isothermal phase transitions if light affects the order parameter of the system within a mesophase sufficiently. In nearly all previous examinations, light exposure of photoresponsive liquid-crystal materials and mixtures resulted in order-decreasing photo-induced isothermal phase transitions. Under specialized conditions, an increase in order with light exposure has been reported, despite the tendency of the photoresponsive liquid-crystal system to reduce order in the exposed state. A direct, photo-induced transition from the isotropic to the nematic phase has been observed in a mixture of spiropyran molecules and a nematic liquid crystal. Here we report a class of naphthopyran-based materials that exhibit photo-induced conformational changes in molecular structure capable of yielding order-increasing phase transitions. Appropriate functionalization of the naphthopyran molecules leads to an exceedingly large order parameter in the open form, which results in a clear to strongly absorbing dichroic state. The increase in order with light exposure has profound implications in optics, photonics, lasing and displays and will merit further consideration for applications in solar energy harvesting. The large, photo-induced dichroism exhibited by the material system has been long sought in ophthalmic applications such as photochromic and polarized variable transmission sunglasses.

2.
Heliyon ; 10(6): e27353, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533076

RESUMEN

Predicting the electricity demand is a key responsibility for the energy industry and governments in order to provide an effective and dependable energy supply. Traditional projection techniques frequently rely on mathematical models, which are limited in their ability to recognize complex patterns and correlations in data. Machine learning has emerged as a viable tool for estimating electricity in the last decade. In this study, the Modified War Strategy Optimization-Based Convolutional Neural Network (MWSO-CNN) has been provided for electricity demand prediction. To increase the precision of electricity demand prediction, the MWSO-CNN approach integrates the benefits of the modified war strategy optimization technique and the convolutional neural network. To improve efficiency, the modified war strategy optimization technique is employed to adjust the hyperparameters of the CNN algorithm. The suggested MWSO-CNN approach is tested on a real-world electricity demand dataset, and the findings show that it outperforms many state-of-the-art machine learning techniques for predicting electricity demand. In general, the suggested MWSO-CNN approach could offer a successful and cost-effective strategy for predicting energy consumption, which will benefit both the energy business and society as a whole.

3.
Phys Rev E ; 93(3): 032701, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078421

RESUMEN

Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4-n-pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

4.
Philos Trans A Math Phys Eng Sci ; 364(1847): 2747-61, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973487

RESUMEN

Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields. Liquid crystals with such phases are tunable, self-assembled, photonic band gap materials; they offer exciting opportunities both in basic science and in technology. Since the density of photon states is suppressed in the stop band and is enhanced at the band edges, these materials may be used as switchable filters or as mirrorless lasers. Disordered periodic liquid crystal structures can show random lasing. We highlight recent advances in this rapidly growing area, and discuss future prospects in emerging liquid crystal materials. Liquid crystal elastomers and orientationally ordered nanoparticle assemblies are of particular interest.

6.
Nat Mater ; 1(2): 111-3, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12618825

RESUMEN

Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.


Asunto(s)
Cristalización/métodos , Cristalografía/métodos , Rayos Láser , Luz , Ensayo de Materiales/métodos , Fotoquímica/instrumentación , Polímeros/química , Diseño de Equipo , Retroalimentación , Fotoquímica/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA