RESUMEN
The future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaics (CPVs) is one of the most promising technologies owing to its high photo-conversion efficiency. Although most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC). This work constitutes a preliminary investigation into a "large-area" PSC module under a Fresnel lens (FL) with a "refractive optical concentrator-silicon-on-glass" base to minimize the PV performance and scalability trade-off concerning the PSCs. The FL-PSC system measured the solar current-voltage characteristics in variable lens-to-cell distances and illuminations. The PSC module temperature was systematically studied using the COMSOL transient heat transfer mechanism. The FL-based technique for "large-area" PSC architectures is a promising technology that further facilitates the potential for commercialization.
RESUMEN
Thin mesoporous films of α-Fe(2)O(3) have been prepared on conducting glass substrates using layer-by-layer self-assembly of ca. 4 nm hydrous oxide nanoparticles followed by calcining. The electrodes were used to study the oxygen evolution reaction (OER) in the dark and under illumination using in situ potential-modulated absorption spectroscopy (PMAS) and light-modulated absorption spectroscopy (LMAS) combined with impedance spectroscopy. Formation of surface-bound higher-valent iron species (or "surface trapped holes") was deduced from the PMAS spectra measured in the OER onset region. Similar LMAS spectra were obtained at more negative potentials in the onset region of photoelectrochemical OER, indicating involvement of the same intermediates. The impedance response of the mesoporous α-Fe(2)O(3) electrodes exhibits characteristic transmission line behavior that is attributed to slow hopping of holes, probably between surface iron species. Frequency-resolved PMAS and LMAS measurements revealed slow relaxation behavior that can be related to the impedance response and that indicates that the lifetime of the intermediates (or trapped holes) involved in the OER is remarkably long.
RESUMEN
Herein, we performed an encyclopedic analysis on the photoelectrocatalytic hydrogen production of BiVO4/g-C3N4 decorated with reduced graphene oxide (RGO) or graphene quantum dots (GQDs). The differences between RGO and GQDs as an electron mediator was revealed for the first time in the perspective of theoretical DFT analysis and experimental validation. It was found that the incorporation of GQDs as an electron mediator promotes better photoelectrocatalytic hydrogen performance in comparison to the RGO. The addition of GQD can significantly improve the activity by 25.2 and 75.7% in comparison to the BiVO4/RGO/g-C3N4 and binary composite samples, respectively. Correspondingly, the BiVO4/GQD/g-C3N4 attained the highest photocurrent density of 19.2 mA/cm2 with an ABPE of 0.57% without the presence of any sacrificial reagents. This enhancement is stemming from the low photocharge carrier transfer resistance which was further verified via DFT study. The DFT analysis revealed that the BiVO4/GQD/g-C3N4 sample shared their electronic cloud density through orbital hybridization while the BiVO4/RGO/g-C3N4 sample show less mutual sharing. Additionally, the charge redistribution of the GQDs-composite at the heterostructure interface articulates a more stable and stronger heterojunction than the RGO-composite. Notably, this study provides new insights on the effect of different carbonaceous materials (RGO and GQDs) which are often used as an electron mediator to enhance photocatalytic activity.
RESUMEN
Photoelectrochemical (PEC) water splitting to produce solar fuel (hydrogen) has long been considered as the Holy Grail to a carbon-free hydrogen economy. The PEC concept to produce solar fuel is to emulate the natural photosynthesis using man made materials. The bottle-neck in realising the concept practically has been the difficulty in identifying stable low-cost semiconductors that meet the thermodynamic and kinetic criteria for photoelectrolysis. We have fabricated a novel p-type LaFeO3 photoelectrode using an inexpensive and scalable spray pyrolysis method. Our nanostructured LaFeO3 photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied. Moreover, the photoelectrode has a faradaic efficiency of 30% and showed excellent stability over 21 hours. From optical and impedance data, the constructed band diagram showed that LaFeO3 can straddle the water redox potential with the conduction band at -1.11 V above the reduction potential of hydrogen. We have fabricated a low cost LaFeO3 photoelectrode that can spontaneously produce hydrogen from water using sunlight, making it a strong future candidate for renewable hydrogen generation.
RESUMEN
The kinetics of light-driven oxygen evolution at polycrystalline alpha-Fe2O3 layers prepared by aerosol-assisted chemical vapour deposition has been studied using intensity modulated photocurrent spectroscopy (IMPS). Analysis of the frequency-dependent IMPS response gives information about the competition between the 4-electron oxidation of water by photogenerated holes and losses due to electron-hole recombination via surface states. The very slow kinetics of oxygen evolution indicates the presence of a kinetic bottleneck in the overall process. Surface treatment of the alpha-Fe2O3 with dilute cobalt nitrate solution leads to a remarkable improvement in the photocurrent response, but contrary to expectation, the results of this study show that this is not due to catalysis of hole transfer but is instead the consequence of almost complete suppression of surface recombination.
RESUMEN
Rate constants for recombination and hole transfer during oxygen evolution at illuminated α-Fe(2)O(3) electrodes were measured by intensity-modulated photocurrent spectroscopy and found to be remarkably low. Treatment of the electrode with a Co(II) solution suppressed surface recombination but did not catalyse hole transfer. Intermediates in the reaction were detected spectroscopically.
RESUMEN
Heterobimetallic molecular precursors [Ti4(dmae)6(mu-OH)(mu-O)6Cu6(OAc)9.H2O] (1) and [Zn7(OAc)10(mu-OH)6Cu5(dmae)4Cl4] (2) for the deposition of metal oxide thin films of Cu6Ti4O12 (Cu3TiO4, TiO2) and Cu5Zn7O12 (ZnO, CuO) were prepared by the interaction of Ti(dmae)4 with Cu(OAc)2.2H2O for 1 and tetrameric (N,N-dimethylamino)ethanolatocopper(II) chloride, [(dmae)CuCl]4 [where dmae = (N,N-dimethylamino)ethanolate] with Zn(OAc)2.2H2O (where OAc = acetate) for 2 in dry toluene. Both complexes were characterized by melting point, elemental analysis, Fourier transform IR, fast atom bombardment mass spectrometry, thermal analysis (TGA), and single-crystal X-ray diffraction. TGA and XRD prove that complexes 1 and 2 undergo facile thermal decomposition at 300 and 460 degrees C to form thin films of Cu/Ti and Cu/Zn mixed-metal oxides, respectively. Scanning electron microscopy and XRD of the thin films suggest the formation of impurity-free crystallite mixtures of Cu3TiO4 and TiO2, with average crystallite sizes of 22.2 nm from complex 1 and of ZnO and CuO with average crystallite sizes of 26.1 nm from complex 2.
RESUMEN
Heterobimetallic molecular precursors [Co2(acac)2mu-OH)2Cu4(dmae)4Cl4] (2) and [Ni2(acac)2(mu-OH)2Cu4(dmae)4Cl4] (3) [dmaeH = N,N-dimethylaminoethanol and acac = 2,4-pentanedionate] for the deposition of mixed oxide thin films were prepared by the interaction of tetrameric N,N-dimethylaminoethanolato copper(II) chloride, [Cu(dmae)Cl]4 (1) with M(acac)2.xH2O, [M = Co, Ni] in toluene. Both heterobimetallic cage complexes were characterized by melting point, elemental analysis, FT-IR spectroscopy, mass spectrometry, magnetometery, and single-crystal X-ray diffraction. Complexes 2 and 3 are isostructural and crystallize in the monoclinic space group P21/n. A TGA study shows that both complexes undergo controlled thermal decomposition at 450 degrees C to give mixed metal oxides. Solid-state infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and X-ray powder diffraction (XRD) analysis were performed to analyze the chemical composition and surface morphology of the deposited oxide thin films. The results obtained indicate the formation of impurity-free crystalline mixed oxide films with particle sizes ranging from 0.55 to 2.0 microm.
RESUMEN
Ba(dmae)2 (dmaeH=N,N-dimethylaminoethanol, C4H11NO) reacts with Co(acac)2 (acac=2,4-pentanedionate) to produce the trinuclear coordination complex [Ba2Co(acac)4(dmae)3(dmaeH)] in an 85% yield. Spectroscopic and single-crystal X-ray diffraction experiments indicate that the complex possesses a structure in which two barium atoms and a cobalt atom are bridged by acac and dmae groups. The barium centers are eight and nine coordinate with BaO7N and BaO7N2 coordination spheres while the cobalt is a more regular CoO5N octahedron. This 2:1 heterobimetallic molecular complex was investigated as precursor for the deposition of thin film by AACVD. The film was characterized by SEM and XRD. TGA shows that the complex starts thermal decomposition upon heating in nitrogen atmosphere at 105 degrees C to produce barium cobalt oxide material of a Ba2CoO3 composition with an orthorhombic structure. The synthetic approach detailed here represents a unique route to the formation of a heterobimetallic barium cobalt coordination complex.