Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Asian J ; : e202301100, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38275189

RESUMEN

Doping conventional materials with a second element is an exciting strategy for enhancing catalytic performance via electronic structure modifications. Herein, Mn-doped CdS thin films were successfully synthesized with the aid of the chemical bath deposition (CBD) by varying the pH value (8, 10, and 12) and the surfactant amount (20, 40, 60 mg). Different morphologies like nano-cubes, nanoflakes, nano-worms, and nanosheets were obtained under different deposition conditions. The optimized Mn-doped CdS synthesized at pH=8 exhibited better photoelectrochemical (PEC) performance for oxygen evolution reaction (OER) than pure CdS films, with a maximum photocurrent density of 300 µA/cm2 at an external potential of 0.5 V, under sunlight illumination. The observed performance is attributed to the successful Mn doping, porosity, high surface area, and nanosphere morphology.

2.
RSC Adv ; 13(34): 23547-23557, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37555091

RESUMEN

Developing an efficient and non-precious bifunctional catalyst capable of performing water splitting and organic effluent degradation in wastewater is a great challenge. This article reports an efficient bifunctional nanocatalyst based on NiCo2O4, synthesized using a simple one-pot co-precipitation method. We optimized the synthesis conditions by varying the synthesis pH and sodium dodecyl sulfate (SDS) concentrations. The prepared catalyst exhibited excellent catalytic activity for the electrochemical oxygen evolution reaction (OER) and simultaneous methylene blue (MB) dye degradation. Among the catalysts, the catalyst synthesized using 1 g SDS as a surfactant at 100 °C provided the highest current density (658 mA cm-2), lower onset potential (1.34 V vs. RHE), lower overpotential (170 mV @ 10 mA cm-2), and smallest Tafel slope (90 mV dec-1) value. Furthermore, the OH˙ radicals produced during the OER electrochemically degraded the MB to 90% within 2 hours. The stability test conducted at 20 mA cm-2 showed almost negligible loss of the electrochemical response for OER, with 99% retention of the original response. These results strongly suggest that this catalyst is a promising candidate for addressing the challenges of wastewater treatment and energy generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA