Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588804

RESUMEN

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Asunto(s)
Hidrolasas de Éster Carboxílico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteína Fosfatasa 2 , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fosforilación , Luciferasas/metabolismo , Luciferasas/genética , Unión Proteica , Células HEK293
2.
Langmuir ; 39(1): 220-226, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537801

RESUMEN

Structured water near surfaces is important in nonclassical crystallization, biomineralization, and restructuring of cellular membranes. In addition to equilibrium structures, studied by atomic force microscopy (AFM), high-speed AFM (H-S AFM) can now detect piconewton forces in microseconds. With increasing speeds and decreasing tip diameters, there is a danger that continuum water models will not hold, and molecular dynamic (MD) simulations would be needed for accurate predictions. MD simulations, however, can only evolve over tens of nanoseconds due to memory and computational efficiency/speed limitations, so new methods are needed to bridge the gap. Here, we report a hybrid, multiscale simulation method, which can bridge the size and time scale gaps to existing experiments. Structured water is studied between a moving silica AFM colloidal tip and a cleaved mica surface. The computational domain includes 1,472,766 atoms. To mimic the effect of long-range hydrodynamic forces occurring in water, when moving the AFM tip at speeds from 5 × 10-7 to 30 m/s, a hybrid multiscale method with local atomistic resolution is used, which serves as an effective open-domain boundary condition. The multiscale simulation is thus equivalent to using a macroscopically large computational domain with equilibrium boundary conditions. Quantification of the drag force shows the breaking of continuum behavior. Nonmonotonic dependence on both the tip speed and distance from the surface implies breaking of the hydration layer around the moving tip at time scales smaller than water cluster formation and strong water compressibility effects at the highest speeds.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Microscopía de Fuerza Atómica/métodos , Agua/química
3.
Phys Chem Chem Phys ; 23(43): 24617-24626, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34726674

RESUMEN

Spatiotemporal regulation of viral capsid assembly ensures the selection of the viral genome for encapsidation. The porcine circovirus 2 is the smallest autonomously replicating pathogenic virus, yet how PCV2 capsid assembly is regulated to occur within the nucleus remains unknown. We report that pure PCV2 capsid proteins, in the absence of nucleic acids, require acidic conditions to assemble into empty capsids in vitro. By employing constant pH replica exchange molecular dynamics, we unveil the atomistic mechanism of pH-dependency for capsid assembly. The results show that an appropriate protonation configuration for a cluster of acidic amino acids is necessary to appropriately position the GH-loop for driving the capsid assembly. We demonstrate that assembly is prohibited at neutral pH because deprotonation of these residues results in their electrostatic repulsion, shifting the GH-loop to a position incompatible with capsid assembly. We propose that encapsulation of nucleic acids overcomes this repulsion to suitably position the GH-loop. Our findings provide the first atomic resolution mechanism of capsid assembly regulation. These findings are useful for the development of therapeutics that inhibit PCV2 self-assembly.


Asunto(s)
Proteínas de la Cápside/química , Circovirus/química , Simulación de Dinámica Molecular , Animales , Concentración de Iones de Hidrógeno , Porcinos , Termodinámica
4.
Anal Chem ; 88(16): 7991-7, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27459509

RESUMEN

To prepare a fluorogenic peptide ligand which binds to an arbitrary target, we previously succeeded in seeking a fluorogenic ligand to calmodulin using in vitro selection. In this study the environment-sensitive fluorescent group in the selected peptide ligand was replaced with other fluorescent groups to find the possibility to increase the fluorogenic activity. Surface plasmon resonance measurement exhibited that the binding affinity was held even after the replacement. However, the replacement significantly affected the fluorogenic activity. It depended on the kind of incorporated fluorophors and linker length. As a result, the incorporation of 4-N,N-dimethylamino-1,8-naphthalimide enhanced the fluorescence intensity over 100-fold in the presence of target calcium-bound calmodulin. This study demonstrated that the functionality of in vitro selected peptide can be tuned with keeping the binding affinity.


Asunto(s)
Calmodulina/química , Fluorescencia , Colorantes Fluorescentes/química , Naftalimidas/química , Péptidos/química , Colorantes Fluorescentes/síntesis química , Ligandos , Naftalimidas/síntesis química , Resonancia por Plasmón de Superficie
5.
Biophys J ; 108(2): 350-9, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25606683

RESUMEN

The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Polarización de Fluorescencia , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Datos de Secuencia Molecular , Movimiento (Física) , Fragmentos de Péptidos/metabolismo , Unión Proteica , Difracción de Rayos X
6.
J Comput Chem ; 36(30): 2209-18, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26400829

RESUMEN

In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics-based force fields, although they cannot fully describe protein-ligand interactions. A noteworthy computational method in development involves large-scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large-scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange-correlation functionals, and solvation effects) on the binding energies of the FK506-binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2-MP2/6-31G(d), is suitable for evaluating the protein-ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure-activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein-ligand interaction distance. Our acceleration scheme, which uses FMO2-HF/STO-3G:MP2/6-31G(d) at R(int) = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy.


Asunto(s)
Ligandos , Teoría Cuántica , Proteínas de Unión a Tacrolimus/química , Sitios de Unión , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Termodinámica
7.
J Comput Chem ; 35(29): 2132-9, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25220475

RESUMEN

The Poisson-Boltzmann implicit solvent (PB) is widely used to estimate the solvation free energies of biomolecules in molecular simulations. An optimized set of atomic radii (PB radii) is an important parameter for PB calculations, which determines the distribution of dielectric constants around the solute. We here present new PB radii for the AMBER protein force field to accurately reproduce the solvation free energies obtained from explicit solvent simulations. The presented PB radii were optimized using results from explicit solvent simulations of the large systems. In addition, we discriminated PB radii for N- and C-terminal residues from those for nonterminal residues. The performances using our PB radii showed high accuracy for the estimation of solvation free energies at the level of the molecular fragment. The obtained PB radii are effective for the detailed analysis of the solvation effects of biomolecules.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Proteínas/química , Termodinámica , Solubilidad , Solventes/química
8.
J Chem Phys ; 138(24): 244113, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23822233

RESUMEN

The replica exchange method (REM) is a powerful tool for the conformational sampling of biomolecules. In this study, we propose an enhanced exchange algorithm for REM not meeting the detailed balance condition (DBC), but satisfying the balance condition in all considered exchanges between two replicas. Breaking the DBC can minimize the rejection rate and make an exchange process rejection-free as the number of replicas increases. To enhance the efficiency of REM, all possible pairs--not only the nearest neighbor--were considered in the exchange process. The test simulations of the alanine dipeptide confirmed the correctness of our method. The average traveling distance of each replica in the temperature distribution was also increased in proportion to an increase in the exchange rate. Furthermore, we applied our algorithm to the conformational sampling of the 10-residue miniprotein, chignolin, with an implicit solvent model. The results showed a faster convergence in the calculation of its free energy landscape, compared to that achieved using the normal exchange method of adjacent pairs. This algorithm can also be applied to the conventional near neighbor method and is expected to reduce the required number of replicas.


Asunto(s)
Alanina/química , Algoritmos , Dipéptidos/química , Oligopéptidos/química
9.
Biochemistry ; 51(40): 7974-82, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22963334

RESUMEN

In this study, we aim to relate experimentally measured macroscopic properties to dynamic and structural changes as calculated by molecular dynamics (MD) simulations. We performed the analysis on four GFP (green fluorescent protein) variants, which have amino acid replacements or insertion in a flexible region on the protein surface and which resulted from a previous protein splicing reaction optimization experiment. The variants are a reference GFP (CEGFP), GFP-N144C, GFP-N144C/Y145F, and a GFP with five residues inserted between Y145 and N146 (GFP-5ins). As a result, we identified a single Y145F mutation that increased the thermal stability of GFP-N144C/Y145F by 3-4 °C. Because circular dichroism measurements indicated that the overall GFP ß-barrel fold was maintained in all variants, we presumed that the fluorescence activity and thermal stability related to local changes that could be detected by standard MD simulations. The 60 ns MD simulations indicated that the Y145's hydroxyl group, which is straight and buried in the crystal structure, was bent avoiding the hydrophobic core during the simulation in both CEGFP and GFP-N144C. This local strain was relieved in GFP-N144C/Y145F, where the tyrosine's hydroxyl group was replaced with the F145 hydrophobic aliphatic carbon. F145 remained indeed buried during the simulation maintaining local compactness, which presumably reflected the improved thermal stability of GFP-N144C/Y145F. Furthermore, the analysis of internal water molecules localized within the GFP's ß-barrel suggested that a change in the local hydrogen bonding pattern around the chromophore correlated with a strong fluorescence activity decrease in GFP-5ins. Although relating experimental observation with calculated molecular features proved to be delicate, this study suggested that some microscopic features could be useful reporters for redesigning GFPs and other proteins. The newly identified GFP-N144C/Y145F was among the most stable GFP variant and demonstrates the potential of such computer-aided design.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Dicroismo Circular , Escherichia coli/metabolismo , Fluorescencia , Regulación Bacteriana de la Expresión Génica , Calor , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Conformación Proteica , Estabilidad Proteica , Agua
10.
ACS Omega ; 6(27): 17609-17620, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34278146

RESUMEN

The interactions between proteins and ligands are involved in various biological functions. While experimental structures provide key static structural information of ligand-unbound and ligand-bound proteins, dynamic information is often insufficient for understanding the detailed mechanism of protein-ligand binding. Here, we studied the conformational changes of the tankyrase 2 binding pocket upon ligand binding using molecular dynamics simulations of the ligand-unbound and ligand-bound proteins. The ligand-binding pocket has two subsites: the nicotinamide and adenosine subsite. Comparative analysis of these molecular dynamics trajectories revealed that the conformational change of the ligand-binding pocket was characterized by four distinct conformations of the ligand-binding pocket. Two of the four conformations were observed only in molecular dynamics simulations. We found that the pocket conformational change on ligand binding was based on the connection between the nicotinamide and adenosine subsites that are located adjacently in the pocket. From the analysis, we proposed the protein-ligand binding mechanism of tankyrase 2. Finally, we discussed the computational prediction of the ligand binding pose using the tankyrase 2 structures obtained from the molecular dynamics simulations.

11.
PLoS Comput Biol ; 5(10): e1000528, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19816553

RESUMEN

Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was improved by 1.6-4.0 times that of the enrichment performance of molecular dockings. This result indicates that the application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical. However, further optimization of the computational protocols is required for screening various target proteins.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Modelos Químicos , Farmacocinética , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Área Bajo la Curva , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Ligandos , Modelos Moleculares , Curva ROC , Termodinámica , Tripsina/química , Tripsina/metabolismo
12.
Biophys Physicobiol ; 17: 113-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194514

RESUMEN

Following the discovery of cryptochrome-DASH (CRYD) as a new type of blue-light receptor cryptochrome, theoretical and experimental findings on CRYD have been reported. Early studies identified CRYD as highly homologous to the DNA repair enzyme photolyases (PLs), suggesting the involvement of CRYD in DNA repair. However, an experimental study reported that CRYD does not exhibit DNA repair activity in vivo. Successful PL-mediated DNA repair requires: (i) the recognition of UV-induced DNA lesions and (ii) an electron transfer reaction. If either of them is inefficient, the DNA repair activity will be low. To elucidate the functional differences between CRYD and PL, we theoretically investigated the electron transfer reactivity and DNA binding affinity of CRYD and also performed supplementary experiments. The average electronic coupling matrix elements value for Arabidopsis thaliana CRYD (AtCRYD) was estimated to be 5.3 meV, comparable to that of Anacystis nidulans cyclobutane pyrimidine dimer PLs (AnPL) at 4.5 meV, indicating similar electron transfer reactivities. We also confirmed the DNA repair activity of AtCRYD for UV-damaged single-stranded DNA by the experimental analysis. In addition, we investigated the dynamic behavior of AtCRYD and AnPL in complex with double-stranded DNA using molecular dynamics simulations and observed the formation of a transient salt bridge between protein and DNA in AtCRYD, in contrast to AnPL in which it was formed stably. We suggested that the instability of the salt bridge between protein and DNA will lead to reduced DNA binding affinity for AtCRYD.

13.
Sci Rep ; 10(1): 16986, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046764

RESUMEN

We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein-ligand complexes and suggest the possibilities of further drug optimisations.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Cisteína Endopeptidasas/metabolismo , Reposicionamiento de Medicamentos/métodos , Inhibidores de la Proteasa del VIH/farmacología , Neumonía Viral/tratamiento farmacológico , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/metabolismo , Sitios de Unión/efectos de los fármacos , Fenómenos Biofísicos , COVID-19 , Dominio Catalítico/efectos de los fármacos , Biología Computacional , Proteasas 3C de Coronavirus , Darunavir/metabolismo , Darunavir/farmacología , Inhibidores de la Proteasa del VIH/metabolismo , Humanos , Indinavir/metabolismo , Indinavir/farmacología , Lopinavir/metabolismo , Lopinavir/farmacología , Simulación de Dinámica Molecular , Nelfinavir/metabolismo , Nelfinavir/farmacología , Pandemias , Ritonavir/metabolismo , Ritonavir/farmacología , SARS-CoV-2 , Saquinavir/metabolismo , Saquinavir/farmacología
14.
Biophys J ; 96(6): 2278-88, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19289054

RESUMEN

The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.


Asunto(s)
Simulación por Computador , Receptores ErbB/metabolismo , Modelos Moleculares , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Receptores ErbB/química , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Adaptadoras de la Señalización Shc/química , Termodinámica
15.
J Comput Chem ; 30(14): 2351-7, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19350574

RESUMEN

Scientific applications do frequently suffer from limited compute performance. In this article, we investigate the suitability of specialized computer chips to overcome this limitation. An enhanced Poisson Boltzmann program is ported to the graphics processing unit and the application specific integrated circuit MDGRAPE-3 and resulting execution times are compared to the conventional performance obtained on a modern central processing unit. Speed Up factors are measured and an analysis of numerical accuracy is provided. On both specialized architectures the improvement is increasing with problem size and reaches up to a Speed Up factor of 39 x for the largest problem studied. This type of alternative high performance computing can significantly improve the performance of demanding scientific applications.

16.
J Comput Chem ; 30(1): 110-8, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18524021

RESUMEN

We describe the application of a special purpose board for molecular dynamics simulations, named MDGRAPE-3, to the problem of simulating periodic bio-molecular systems. MDGRAPE-3 is the latest board in a series of hardware accelerators designed to calculate the nonbonding long-range interactions much more rapidly than normal processors. So far, MDGRAPEs were mainly applied to isolated systems, where very many nonbonded interactions were calculated without any distance cutoff. However, in order to regulate the density and pressure during simulations of membrane embedded protein systems, one has to evaluate interactions under periodic boundary conditions. For this purpose, we implemented the Particle-Mesh Ewald (PME) method, and its approximation with distance cutoffs and charge neutrality as proposed by Wolf et al., using MDGRAPE-3. When the two methods were applied to simulations of two periodic biomolecular systems, a single MDGRAPE-3 achieved 30-40 times faster computation times than a single conventional processor did in the both cases. Both methods are shown to have the same molecular structures and dynamics of the systems.


Asunto(s)
Simulación por Computador , Proteínas/química , Programas Informáticos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Conformación Proteica , Agua/química
17.
Sci Rep ; 9(1): 2530, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792475

RESUMEN

In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence ('NFGAILSS') derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN's special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor ß-structures. Large peptide clusters (size 18-26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of ß-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest ß-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the ß-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Polipéptido Amiloide de los Islotes Pancreáticos/ultraestructura , Simulación de Dinámica Molecular , Alanina/química , Secuencia de Aminoácidos/genética , Amiloide/ultraestructura , Proteínas Amiloidogénicas/ultraestructura , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Conformación Proteica en Lámina beta/genética , Estructura Secundaria de Proteína , Agua/química
18.
ACS Omega ; 3(4): 4475-4485, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458673

RESUMEN

In computational drug discovery, ranking a series of compound analogues in the order that is consistent with the experimental binding affinities remains a challenge. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics (MM)-based force fields, although they cannot completely describe protein-ligand interactions. By contrast, quantum mechanics (QM) calculations play an important role in understanding the protein-ligand interactions; however, their huge computational costs hinder their application in drug discovery. In this study, we have evaluated the ability to rank the binding affinities of tankyrase 2 ligands by combining both MM and QM calculations. Our computational approach uses the protein-ligand binding energies obtained from a cost-effective multilayer fragment molecular orbital (MFMO) method combined with the solvation energy obtained from the MM-Poisson-Boltzmann/surface area (MM-PB/SA) method to predict the binding affinity. This approach enabled us to rank tankyrase 2 inhibitor analogues, outperforming several MM-based methods, including rescoring by molecular docking and the MM-PB/SA method alone. Our results show that this computational approach using the MFMO method is a promising tool for predicting the rank order of the binding affinities of inhibitor analogues.

19.
J Biomol Struct Dyn ; 35(15): 3221-3231, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27771988

RESUMEN

In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein-ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski's equality was employed compared with the second-order cumulant expansion equation of Jarzynski's equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.


Asunto(s)
Simulación de Dinámica Molecular , Sitios de Unión , Dominio Catalítico , Quinasa 2 Dependiente de la Ciclina/química , Ligandos , Unión Proteica , Conformación Proteica en Lámina beta , Proteínas de Unión a Tacrolimus/química , Termodinámica , Tripsina/química
20.
J Phys Chem Lett ; 8(4): 779-784, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28129688

RESUMEN

Present experimental methods do not have sufficient resolution to investigate all processes in virus particles at atomistic details. We report the results of molecular dynamics simulations and analyze the connection between the number of ions inside an empty capsid of PCV2 virus and its stability. We compare the crystallographic structures of the capsids with unresolved N-termini and without them in realistic conditions (room temperature and aqueous solution) and show that the structure is preserved. We find that the chloride ions play a key role in the stability of the capsid. A low number of chloride ions results in loss of the native icosahedral symmetry, while an optimal number of chloride ions create a neutralizing layer next to the positively charged inner surface of the capsid. Understanding the dependence of the capsid stability on the distribution of the ions will help clarify the details of the viral life cycle that is ultimately connected to the role of packaged viral genome inside the capsid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA