Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 501: 92-103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353106

RESUMEN

During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.


Asunto(s)
Células Madre , Pez Cebra , Animales , Ratones , Diferenciación Celular , Hematopoyesis/genética , Histona Demetilasas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Development ; 147(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32928905

RESUMEN

Neurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants, and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are regulated independently of each other and have distinct roles. The fibroblast growth factors (Fgf) 3 and 8a, and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and Hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Proteínas de Pez Cebra/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Dev Biol ; 455(2): 393-408, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31323192

RESUMEN

The cerebellum and the cerebellum-like structure in the mesencephalic tectum in zebrafish contain multiple cell types, including principal cells (i.e., Purkinje cells and type I neurons) and granule cells, that form neural circuits in which the principal cells receive and integrate inputs from granule cells and other neurons. It is largely unknown how these cells are positioned and how neural circuits form. While Reelin signaling is known to play an important role in cell positioning in the mammalian brain, its role in the formation of other vertebrate brains remains elusive. Here we found that zebrafish with mutations in Reelin or in the Reelin-signaling molecules Vldlr or Dab1a exhibited ectopic Purkinje cells, eurydendroid cells (projection neurons), and Bergmann glial cells in the cerebellum, and ectopic type I neurons in the tectum. The ectopic Purkinje cells and type I neurons received aberrant afferent fibers in these mutants. In wild-type zebrafish, reelin transcripts were detected in the internal granule cell layer, while Reelin protein was localized to the superficial layer of the cerebellum and the tectum. Laser ablation of the granule cell axons perturbed the localization of Reelin, and the mutation of both kif5aa and kif5ba, which encode major kinesin I components in the granule cells, disrupted the elongation of granule cell axons and the Reelin distribution. Our findings suggest that in zebrafish, (1) Reelin is transported from the granule cell soma to the superficial layer by axonal transport; (2) Reelin controls the migration of neurons and glial cells from the ventricular zone; and (3) Purkinje cells and type I neurons attract afferent axons during the formation of the cerebellum and the cerebellum-like structure.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Cerebelo/embriología , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Serina Endopeptidasas/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Sistemas CRISPR-Cas , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Cerebelo/citología , Proteínas de la Matriz Extracelular/genética , Cinesinas/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Células de Purkinje/citología , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética
4.
BMC Biol ; 16(1): 40, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661185

RESUMEN

BACKGROUND: Conventionally, comparison among amniotes - birds, mammals, and reptiles - has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes. RESULTS: Herein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as 'elusive' genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content. CONCLUSION: This highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years.


Asunto(s)
Duplicación de Gen/genética , Genoma/genética , Lagartos/clasificación , Lagartos/genética , Animales , Composición de Base/genética , Evolución Biológica , Evolución Molecular , Madagascar , Filogenia
5.
Genes Cells ; 22(8): 723-741, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28639422

RESUMEN

A spontaneous medaka ro mutant shows abnormal wobbling and rolling swimming behaviors. By positional cloning, we mapped the ro locus to a region containing the gene encoding Contactin1b (Cntn1b), which is an immunoglobulin (Ig)-superfamily domain-containing membrane-anchored protein. The ro mutant had a deletion in the cntn1b gene that introduced a premature stop codon. Furthermore, cntn1b mutants generated by the CRISPR/Cas9 system and trans-heterozygotes of the CRISPR mutant allele and ro had abnormal swimming behavior, indicating that the cntn1b gene was responsible for the ro-mutant phenotype. We also established zebrafish cntn1a and cntn1b mutants by transcription activator-like effector nucleases (TALENs). Zebrafish cntn1b but not cntn1a mutants showed abnormal swimming behaviors similar to those in the ro mutant, suggesting that Cntn1b plays a conserved role in the formation or function of the neural circuits that control swimming in teleosts. Although Cntn1-deficient mice have abnormal cerebellar neural circuitry, there was no apparent histological abnormality in the cerebellum of medaka or zebrafish cntn1b mutants. The medaka cntn1b mutants had defective optokinetic response (OKR) adaptation and abnormal rheotaxis (body positioning relative to water flow). Medaka and zebrafish cntn1b mutants are effective models for studying the neural circuits involved in motor learning and motor coordination.


Asunto(s)
Codón de Terminación/genética , Contactina 1/metabolismo , Natación , Proteínas de Pez Cebra/metabolismo , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Contactina 1/genética , Aprendizaje , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Oryzias , Pez Cebra , Proteínas de Pez Cebra/genética
6.
PLoS Genet ; 11(10): e1005587, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26451951

RESUMEN

Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.


Asunto(s)
Cerebelo/metabolismo , Colágeno Tipo IV/genética , Células Ganglionares de la Retina/metabolismo , Pez Cebra/genética , Animales , Axones/metabolismo , Membrana Basal/crecimiento & desarrollo , Membrana Basal/metabolismo , Cerebelo/crecimiento & desarrollo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Células de Purkinje/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
7.
Proc Natl Acad Sci U S A ; 112(45): 13922-7, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26512114

RESUMEN

The hemangioblast is a progenitor cell with the capacity to give rise to both hematopoietic and endothelial progenitors. Currently, the regulatory mechanisms underlying hemangioblast formation are being elucidated, whereas those controllers for the selection of hematopoietic or endothelial fates still remain a mystery. To answer these questions, we screened for zebrafish mutants that have defects in the hemangioblast expression of Gata1, which is never expressed in endothelial progenitors. One of the isolated mutants, it627, showed not only down-regulation of hematopoietic genes but also up-regulation of endothelial genes. We identified the gene responsible for the it627 mutant as the zebrafish homolog of Lys-specific demethylase 1 (LSD1/KDM1A). Surprisingly, the hematopoietic defects in lsd1(it627) embryos were rescued by the gene knockdown of the Ets variant 2 gene (etv2), an essential regulator for vasculogenesis. Our results suggest that the LSD1-dependent shutdown of Etv2 gene expression may be a significant event required for hemangioblasts to initiate hematopoietic differentiation.


Asunto(s)
Regulación hacia Abajo , Hemangioblastos/citología , Hematopoyesis/fisiología , Histona Demetilasas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Linaje de la Célula , Técnicas de Silenciamiento del Gen , Histona Demetilasas/genética , Datos de Secuencia Molecular , Mutación , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Mol Hum Reprod ; 23(8): 557-570, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810691

RESUMEN

STUDY QUESTION: Can supplementation of medium with prolactin (PRL), epidermal growth factor (EGF) and 4-hydroxyestradiol (4-OH-E2) prior to embryo transfer improve implantation potential in mouse blastocysts derived from IVF? SUMMARY ANSWER: Combined treatment with PRL, EGF and 4-OH-E2 improves mouse blastocyst implantation rates, while alone, each factor is ineffective. WHAT IS KNOWN ALREADY: Blastocyst dormancy during delayed implantation caused by ovariectomy is maintained by continued progesterone treatment in mice, and estrogen injection rapidly activates blastocysts to implantation-induced status in vivo. While the expression of many proteins is upregulated in implantation-induced blastocysts, selective proteolysis by proteasomes, such as estrogen receptor α (ESR1), occurs in implantation-induced blastocysts to achieve implantation-competent status. It is worth evaluating the proteins expressed during these periods to identify humoral factors that might improve the implantation potential of IVF-derived blastocysts because the poor quality of embryos obtained by IVF is one of the major causes of implantation failure. STUDY DESIGN, SIZE, DURATION: Superovulated oocytes from ICR mice were fertilized with spermatozoa and then cultured in vitro in potassium simplex optimized medium (KSOM) without phenol red (KSOM-P) for 90-96 h. Blastocysts were treated with PRL (10 or 20 mIU/mL), EGF (5 or 10 ng/mL) or 4-OH-E2 (1 or 10 nM) in KSOM-P for 24 h. PARTICIPANTS/MATERIALS, SETTING, METHODS: Levels of breast cancer 1 (BRCA1), EGF receptor (EGFR, also known as ERBB1), ERBB4, tubulointerstitial nephritis antigen-like 1 (TINAGL1) and ESR1 protein were examined with immunohistochemical analysis using immunofluorescence methods and confocal laser scanning microscopy. For embryo transfer, six blastocysts were suspended in HEPES-buffered KSOM-P medium and transferred into the uteri of recipient mice on the morning of Day 4 (0900-1000 h) of pseudopregnancy (Day 1 = vaginal plug). The number of implantation sites was then recorded on Day 6 using the blue dye method. MAIN RESULTS AND THE ROLE OF CHANCE: PRL, EGF and 4-OH-E2 each promoted BRCA1 protein level in the trophectoderm (TE). While PRL treatment resulted in an increase in EGFR, EGF increased both EGFR and ERBB4 in the blastocyst TE. TINAGL1 in the TE was enhanced by 4-OH-E2, which also increased localization of this protein to the basement membrane. Treatment with PRL, EGF or 4-OH-E2 alone did not improve blastocyst implantation rates. Combined treatment with PRL, EGF and 4-OH-E2 resulted in increased levels of EGFR, ERBB4, TINAGL1 and BRCA1 in the TE, whereas ESR1 was not upregulated in the treated blastocysts. Furthermore, combined treatment with PRL, EGF and 4-OH-E2 improved blastocyst implantation rates versus control (P = 0.009). LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Our studies were carried out in a mouse model, and the conclusions were drawn from limited results obtained from one species. Whether the increase in EGFR, ERBB4 and TINAGL1 protein in the TE improves implantation potential of blastocysts needs to be further studied experimentally by assessing other expressed proteins. The influence of combined supplementation in vitro of PRL, EGF and 4-OH-E2 on implantation also requires further examination and optimization in human blastocysts before it can be considered for clinical use in ART. WIDER IMPLICATIONS OF THE FINDINGS: Enhanced implantation potential by combined treatment with PRL, EGF and 4-OH-E2 appears to result in the upregulation of at least two distinct mechanisms, namely signaling via EGF receptors and basement membrane formation during the peri-implantation period in mice. While PRL, EGF and 4-OH-E2 each promoted BRCA1 protein level in the TE, treatment with each alone did not improve blastocyst implantation. Therefore, BRCA1 protein appears to be unnecessary for the attachment reaction in blastocysts in mice Combined supplementation of PRL, EGF and 4-OH-E2 might also be of relevance for embryo transfer of human IVF-derived blastocysts for ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the JSPS KAKENHI [Grant numbers 22580316 and 25450390 (to H.M.)] and the Joint Research Project of Japan-U.S. Cooperative Science Program (to H.M.). The authors have no conflict of interest to declare.


Asunto(s)
Blastocisto/efectos de los fármacos , Implantación del Embrión/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Estrógenos de Catecol/farmacología , Prolactina/farmacología , Animales , Proteína BRCA1 , Blastocisto/metabolismo , Medios de Cultivo , Interacciones Farmacológicas , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Femenino , Fertilización In Vitro , Genes BRCA1 , Genes erbB-1 , Lipocalinas/biosíntesis , Lipocalinas/genética , Ratones , Ratones Endogámicos ICR , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Receptor ErbB-4/genética , Técnicas de Cultivo de Tejidos , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos
9.
Dev Growth Differ ; 59(4): 228-243, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28470724

RESUMEN

The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution.


Asunto(s)
Peces/embriología , Peces/metabolismo , Mamíferos/embriología , Mamíferos/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Evolución Biológica , Cerebelo/embriología , Cerebelo/metabolismo , Neuronas/citología , Neuronas/metabolismo
10.
Dev Biol ; 397(1): 1-17, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25300581

RESUMEN

The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.


Asunto(s)
Cerebelo/embriología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Movimiento Celular , Cerebelo/fisiología , Elementos Transponibles de ADN , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Vías Nerviosas , Neuronas/fisiología , Células de Purkinje/citología , Sinapsis , Transgenes , Pez Cebra/embriología , Pez Cebra/genética
11.
Pflugers Arch ; 468(7): 1271-1282, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27170312

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) is an important endogenous substance that regulates the vascular tone, and the abnormal signaling of 5-HT has been observed in the arteries under several pathophysiological conditions such as diabetes and hypertension. However, signaling pathways of 5-HT-mediated vasocontraction in hypertension remain unclear. Therefore, we tested the hypothesis that 5-HT-mediated contraction and contributions of various kinases such as mitogen-activated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K), Rho kinase (ROCK), and 3-phosphoinositide-dependent kinase 1 (PDK1) to the contraction would be altered in the carotid arteries obtained from spontaneously hypertensive rats (SHR) compared to control Wistar Kyoto (WKY) rats. In the carotid arteries from SHR (vs. those from WKY), (1) the 5-HT-mediated contraction was increased, whereas the norepinephrine-mediated contraction was not; (2) 5-HT-mediated contractions were partly inhibited by each kinase (extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase (JNK), PI3K, ROCK, and PDK1) inhibitor; and (3) 5-HT-stimulated phosphorylation of ERK1/2, p38 MAPK, JNK, myosin phosphatase target subunit 1 (MYPT1), and PDK1 was increased. The expression of ROCK2 but not ROCK1 was increased in the carotid arteries from SHR compared to WKY. The expression of 5-HT2A receptor, a major receptor of 5-HT-mediated contraction in rat carotid artery, was similar in carotid arteries between the two groups. These results suggest that 5-HT-mediated contraction was utilized multiple signaling pathways such as ERK1/2, p38 MAPK, JNK, PI3K, ROCK, and PDK1. Although 5-HT-mediated contraction was increased in the carotid arteries obtained from SHR, further studies are necessary to clarify how each kinase may integrate in the vascular smooth muscles under hypertension.


Asunto(s)
Arterias Carótidas/efectos de los fármacos , Hipertensión/metabolismo , Contracción Muscular/efectos de los fármacos , Serotonina/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Arterias Carótidas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Serotonina 5-HT2A/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo
12.
J Reprod Dev ; 62(1): 43-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26522507

RESUMEN

Tubulointerstitial nephritis antigen-like 1 (Tinagl1, also known as adrenocortical zonation factor 1 [AZ-1] or lipocalin 7) is a matricellular protein. Previously, we demonstrated that Tinagl1 expression was restricted to extraembryonic regions during the postimplantation period and detected marked expression in mouse Reichert's membranes. In uteri, Tinagl1 is markedly expressed in the decidual endometrium during the postimplantation period, suggesting that it plays a physical and physiological role in embryo development and/or decidualization of the uterine endometrium during pregnancy. In the present study, in order to determine the role of Tinagl1 during embryonic development and pregnancy, we generated Tinagl1-deficient mice. Although Tinagl1(-/-) embryos were not lethal during development to term, homologous matings of Tinagl1(-/-) females and Tinagl1(-/-) males showed impaired fertility during pregnancy, including failure to carry pregnancy to term and perinatal lethality. To examine ovarian function, ovulation was induced with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG); the number of ovulated oocytes did not differ between Tinagl1(-/-) and Tinagl1(flox/flox). In vitro fertilization followed by embryo culture also demonstrated the normal developmental potential of Tinagl1-null embryos during the preimplantation period. Our results demonstrate that Tinagl1 deficiency affects female mice and results in subfertility phenotypes, and they suggest that although the potential of Tinagl1(-/-) oocytes is normal, Tinagl1 is related to fertility in adult females but is not essential for either fertilization or preimplantation development in vitro.


Asunto(s)
Fertilidad/genética , Lipocalinas/genética , Proteínas de Neoplasias/genética , Alelos , Animales , Gonadotropina Coriónica/metabolismo , Cruzamientos Genéticos , Técnicas de Cultivo de Embriones , Implantación del Embrión/efectos de los fármacos , Desarrollo Embrionario , Endometrio/metabolismo , Femenino , Fertilización In Vitro , Vectores Genéticos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Ovulación , Fenotipo , Útero/metabolismo
13.
PNAS Nexus ; 3(3): pgae114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525303

RESUMEN

The implantation rate of in vitro fertilization (IVF)-derived blastocysts after embryo transfer remains low, suggesting that the inadequate expression of specific proteins in culture-induced IVF-derived blastocysts contributes to low implantation rates. Therefore, treatment with appropriate regulation may improve the blastocyst implantation ability. This study demonstrated that the combination of l-arginine (Arg) and l-leucine (Leu) exerts distinct effects on IVF-derived mouse blastocysts. Arg with Leu promotes blastocyst implantation, whereas Arg alone decreases the blastocyst ability. Integrin α5ß1 expression was increased in blastocysts treated with Arg and Leu. Arg with Leu also increased reactive oxygen species (ROS) levels and showed a positive correlation with integrin α5ß1. Ascorbic acid, an antioxidant, decreased ROS and integrin α5ß1 levels, which were elevated by Arg with Leu. Meanwhile, the mitochondrial membrane potential (ΔΨm) in blastocysts did not differ between treatments. Glutathione peroxidase (GPx) is involved in ROS scavenging using glutathione (GSH) as a reductant. Arg with Leu decreased GPx4 and GSH levels in blastocysts, and blastocysts with higher ROS levels had lower GPx4 and GSH levels. In contrast, Arg alone increased the percentage of caspase-positive cells, indicating that Arg alone, which attenuated implantation ability, was associated with apoptosis. This study revealed that elevated ROS levels induced by Arg with Leu stimulated integrin α5ß1 expression, thereby enhancing implantation capacity. Our results also suggest that ROS were not due to increased production by oxidative phosphorylation, but rather to a reduction in ROS degradation due to diminished GPx4 and GSH levels.

14.
J Endocr Soc ; 8(4): bvae030, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38410786

RESUMEN

Background: The remote performance of thyroid function blood tests is complicated because it requires blood collection. Objective: To compare TSH and free thyroxine (FT4) levels between capillary and venous blood and assess the adequacy of measuring each value in capillary blood. Methods: This prospective intervention study was conducted at Ito Hospital and was based on the clinical research method. The participants were 5 healthy female volunteers and 50 patients (41 females and 9 males) between the ages of 23 and 81 years. To measure TSH and FT4 levels in capillary and venous blood, a digital immunoassay (d-IA) method capable of measuring trace samples was used. Chemiluminescence measurements were used as controls. Values obtained for each assay system were compared using Spearman's correlation analysis. Capillary blood was collected using an autologous device (TAP II; not approved in Japan). Results: Capillary plasma volume obtained using TAP II was 125 µL or more in 26 cases, 25 µL to 124 µL in 24 cases, and less than 25 µL in 5 cases. Strong correlations were noted in the TSH and FT4 levels between capillary and venous blood, with correlation coefficients of rs = 0.99 and rs = 0.97, respectively. Conclusion: Capillary TSH and FT4 levels strongly correlate with venous blood values. Trace samples can be used in high-precision d-IA methods. These results may promote telemedicine in assessing thyroid function.

15.
Front Bioeng Biotechnol ; 11: 1227357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811377

RESUMEN

Regular checkups for thyroid-stimulating hormone (TSH) levels are essential for the diagnosis of thyroid disease. The enzyme-linked immunosorbent assay (ELISA) technique is a standard method for detecting TSH in the serum or plasma of hospitalized patients. A recently developed next-generation ELISA, the digital immunoassay (d-IA), has facilitated detection of molecules with ultra-high-sensitivity. In this study, we developed a TSH assay system using the d-IA platform. By utilizing the ultrasensitivity of d-IA, we were able to use a sample volume of as little as 5 µL for each assay (the dead volume was 5 µL). The limits of blank, detection, and quantification (i.e., functional sensitivity), were 0.000346, 0.001953, and 0.002280 µIU/mL, respectively, and the precision of the total coefficient of variation did not exceed 10%. The correlation between serum and plasma levels indicated good agreement. Thus, our system successfully measured TSH using d-IA with a small sample volume and equal functional sensitivity to the current third generation like ARCHITECT TSH assay, which has a functional sensitivity of 0.0038 µIU/mL.

16.
Eur J Immunol ; 41(1): 67-75, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182078

RESUMEN

Galectins comprise a family of animal lectins that differ in their affinity for ß-galactosides. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that was recently shown to function as a ligand for T-cell immunoglobin domain and mucin domain-3 (Tim-3) expressed on terminally differentiated CD4(+) Th1 cells. Gal-9 modulates immune reactions, including the induction of apoptosis in Th1 cells. In this study, we investigated the effects of Gal-9 in murine models of acute GVH disease (aGVHD). First, we demonstrated that recombinant human Gal-9 inhibit MLR in a dose-dependent manner, involving both Ca(2+) influx and apoptosis in T cells. Next, we revealed that recombinant human Gal-9 significantly inhibit the progression of aGVHD in murine BM transplantation models. In conclusion, Gal-9 ameliorates aGVHD, possibly by inducing T-cell apoptosis, suggesting that gal-9 may be an attractive candidate for the treatment of aGVHD.


Asunto(s)
Apoptosis , Galectinas/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Enfermedad Aguda , Animales , Canales de Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología
17.
Blood ; 116(12): 2089-95, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20548094

RESUMEN

Despite promising clinical results from imatinib mesylate and second-generation ABL tyrosine kinase inhibitors (TKIs) for most BCR-ABL(+) leukemia, BCR-ABL harboring the mutation of threonine 315 to isoleucine (BCR-ABL/T315I) is not targeted by any of these agents. We describe the in vitro and in vivo effects of AT9283 (1-cyclopropyl-3[5-morpholin-4yl methyl-1H-benzomidazol-2-yl]-urea), a potent inhibitor of several protein kinases, including Aurora A, Aurora B, Janus kinase 2 (JAK2), JAK3, and ABL on diverse imatinib-resistant BCR-ABL(+) cells. AT9283 showed potent antiproliferative activity on cells transformed by wild-type BCR-ABL and BCR-ABL/T315I. AT9283 inhibited proliferation in a panel of BaF3 and human BCR-ABL(+) cell lines both sensitive and resistant to imatinib because of a variety of mechanisms. In BCR-ABL(+) cells, we confirmed inhibition of substrates of both BCR-ABL (signal transducer and activator of transcription-5) and Aurora B (histone H3) at physiologically achievable concentrations. The in vivo effects of AT9283 were examined in several mouse models engrafted either subcutaneously or intravenously with BaF3/BCR-ABL, human BCR-ABL(+) cell lines, or primary patient samples expressing BCR-ABL/T315I or glutamic acid 255 to lysine, another imatinib-resistant mutation. These data together support further clinical investigation of AT9283 in patients with imatinib- and second-generation ABL TKI-resistant BCR-ABL(+) cells, including T315I.


Asunto(s)
Bencimidazoles/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Urea/análogos & derivados , Animales , Antineoplásicos , Benzamidas , Bencimidazoles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Trasplante de Neoplasias , Neoplasias Experimentales/tratamiento farmacológico , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Urea/farmacología , Urea/uso terapéutico
18.
Cancer Sci ; 102(3): 591-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21166958

RESUMEN

Treatment with Abl tyrosine kinase inhibitors (TKI) drastically improves the prognosis of chronic myelogenous leukemia (CML) patients. However, quiescent CML cells are insensitive to TKI and can lead to relapse of the disease. Thus, research is needed to elucidate the properties of these quiescent CML cells, including their microenvironment, in order to effectively target them. Hypoxia is known to be a common feature of solid tumors that contributes to therapeutic resistance. Leukemic cells are also able to survive and proliferate in severely hypoxic environments. The hypoxic conditions in the bone marrow (BM) allow leukemic cells that reside there to become insensitive to cell death stimuli. To target leukemic cells in hypoxic conditions, we focused on the hypoxia-selective cytotoxin, Rakicidin A. A previous report showed that Rakicidin A, a natural product produced by the Micromonospora strain, induced hypoxia-selective cytotoxicity in solid tumors. Here, we describe Rakicidin A-induced cell death in hypoxia-adapted (HA)-CML cells with stem cell-like characteristics. Interestingly, apoptosis was induced via caspase-dependent and -independent pathways. In addition, treatment with Rakicidin A in combination with the TKI, imatinib, resulted in synergistic cytotoxicity against HA-CML cells. In conclusion, Rakicidin A is a promising compound for targeting TKI-resistant quiescent CML stem cells in the hypoxic BM environment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Hipoxia de la Célula , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Adaptación Fisiológica , Caspasa 3/metabolismo , Resistencia a Antineoplásicos , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
19.
Dev Growth Differ ; 52(2): 245-50, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20100247

RESUMEN

Phenotypic rescue experiments have been commonly used in zebrafish since it is convenient to study the causality of mutant phenotypes just by injecting mRNA into embryos. However, this strategy is only effective for phenotypes at early embryonic stages due to mRNA instability. For later developmental stages, DNA constructs are used to express exogenous genes, while it is usually ineffective owing to the problem of mosaicism. This study attempted to solve the problem by using Tol2-mediated transgenesis. As a model case, we used vlad tepes (vlt), a zebrafish gata1 mutant, whose phenotypes have never been able to be rescued at later stages by transient rescue experiments. Blood cell-specific transgenic expression of gata1 was driven by its own promoter/enhancer elements. The co-injection of a Tol2-donor plasmid containing gata1 cDNA and transposase mRNA efficiently rescued the bloodless phenotypes of vlt even in day 12 larvae when definitive erythropoiesis took place with primitive erythropoiesis. This Tol2-mediated rescue is therefore considered to be a quick and easy method for analyzing the mutant phenotypes in zebrafish.


Asunto(s)
Elementos Transponibles de ADN/genética , Factor de Transcripción GATA1/genética , Mutagénesis Insercional , Mutación/genética , Transcripción Genética/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Fenotipo , Pez Cebra/embriología
20.
Clin Cancer Res ; 15(8): 2731-8, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19351774

RESUMEN

PURPOSE: beta-catenin is the downstream effector of the Wnt signaling pathway, and it regulates cell proliferation. beta-catenin overexpression correlates positively with prognosis in several types of malignancies. We herein assessed its effects on growth of multiple myeloma cells using a xenograft model. EXPERIMENTAL DESIGN: We first investigated the expression of beta-catenin in multiple myeloma cell lines and multiple myeloma cells obtained from patients. Next, we investigated the growth inhibitory effects of beta-catenin small interfering RNA on the growth of multiple myeloma cells in vivo. Six-week-old male BALB/c nu/nu mice were inoculated s.c. in the right flank with 5 x 10(6) RPMI8226 cells, followed by s.c. injections of beta-catenin small interfering RNA, scramble small interfering RNA, or PBS/atelocollagen complex twice a week for a total of eight injections. RESULTS: Significantly higher levels of beta-catenin expression were observed in multiple myeloma cell lines and in samples from patients with multiple myeloma than those found in mononuclear cells obtained from healthy volunteers. In in vivo experiments, no inhibitory effects were observed following treatment with scramble small interfering RNA or PBS/atelocollagen complexes, whereas treatment with beta-catenin small interfering RNA/atelocollagen complex significantly inhibited growth of multiple myeloma tumors (P < 0.05). CONCLUSIONS: beta-catenin small interfering RNA treatment inhibited the growth of multiple myeloma tumors in a xenograft model. To our knowledge, this is the first report showing that the treatment with beta-catenin small interfering RNA produces an inhibitory effects on growth of hematologic malignancies in vivo. Because treatment with beta-catenin small interfering RNA inhibited growth of multiple myeloma cells, beta-catenin is the attractive novel target for treating multiple myeloma.


Asunto(s)
Mieloma Múltiple/metabolismo , ARN Interferente Pequeño/genética , beta Catenina/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/patología , Trasplante Heterólogo/patología , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA