Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Am Chem Soc ; 146(19): 13558-13570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712910

RESUMEN

The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser-Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C-H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.

2.
Bioconjug Chem ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39385696

RESUMEN

The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.

3.
Angew Chem Int Ed Engl ; 62(50): e202313063, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37906440

RESUMEN

Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.


Asunto(s)
Glutatión , Péptidos , Péptidos/química , Azidas/química , Catálisis , Reacción de Cicloadición
4.
Appl Environ Microbiol ; 88(15): e0069222, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867559

RESUMEN

The global increase in antimicrobial-resistant infections means that there is a need to develop new antimicrobial molecules and strategies to combat the issue. Aurodox is a linear polyketide natural product that is produced by Streptomyces goldiniensis, yet little is known about aurodox biosynthesis or the nature of the biosynthetic gene cluster (BGC) that encodes its production. To gain a deeper understanding of aurodox biosynthesis by S. goldiniensis, the whole genome of the organism was sequenced, revealing the presence of an 87 kb hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) BGC. The aurodox BGC shares significant homology with the kirromycin BGC from S. collinus Tϋ 365. However, the genetic organization of the BGC differs significantly. The candidate aurodox gene cluster was cloned and expressed in a heterologous host to demonstrate that it was responsible for aurodox biosynthesis and disruption of the primary PKS gene (aurAI) abolished aurodox production. These data supported a model whereby the initial core biosynthetic reactions involved in aurodox biosynthesis followed that of kirromycin. Cloning aurM* from S. goldiniensis and expressing this in the kirromycin producer S. collinus Tϋ 365 enabled methylation of the pyridone group, suggesting this is the last step in biosynthesis. This methylation step is also sufficient to confer the unique type III secretion system inhibitory properties to aurodox. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a significant global pathogen for which traditional antibiotic treatment is not recommended. Aurodox inhibits the ability of EHEC to establish infection in the host gut through the specific targeting of the type III secretion system while circumventing the induction of toxin production associated with traditional antibiotics. These properties suggest aurodox could be a promising anti-virulence compound for EHEC, which merits further investigation. Here, we characterized the aurodox biosynthetic gene cluster from Streptomyces goldiniensis and established the key enzymatic steps of aurodox biosynthesis that give rise to the unique anti-virulence activity. These data provide the basis for future chemical and genetic approaches to produce aurodox derivatives with increased efficacy and the potential to engineer novel elfamycins.


Asunto(s)
Aurodox , Streptomyces , Antibacterianos/farmacología , Aurodox/farmacología , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptomyces/genética , Sistemas de Secreción Tipo III
5.
J Org Chem ; 87(7): 4603-4616, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302774

RESUMEN

A modular approach to prepare tri- and tetracyclic carbazoles by a sequential [3 + 2]heteroannulation is described. First, optimization of Pd-catalyzed Buchwald-Hartwig amination followed by C/N-arylation in a one-pot process is established. Second, mechanistic analyses identified the origins of chemo- and regioselective sequential control of both bond-forming steps. Finally, the substrate scope is demonstrated by the preparation of a range of tri- and tetracyclic carbazoles, including expedient access to several natural products and anti-cancer agents.


Asunto(s)
Carbazoles , Paladio , Aminación , Catálisis
6.
Methods ; 167: 134-142, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31203161

RESUMEN

Manipulating alternative RNA splicing events with small molecules is emerging as a viable mechanism for the development of therapeutics. A salient challenge in the field is understanding the molecular determinants defining the selectivity of splice-switching events and their mechanisms of action. In this review, the current state-of-the-art in splice-switching small molecules is described. Three examples of splice-switching small molecules are presented, and the differences in their modes of action compared.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Humanos , Oligonucleótidos/química , Oligonucleótidos/genética , ARN/química , Bibliotecas de Moléculas Pequeñas/farmacología
7.
J Am Chem Soc ; 141(24): 9555-9563, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31117639

RESUMEN

The structural basis of minor groove recognition of a DNA duplex containing synthetic genetic information by hairpin pyrrole-imidazole polyamides is described. Hairpin polyamides induce a higher melting stabilization of a DNA duplex containing the unnatural P·Z base-pair when an imidazole unit is aligned with a P nucleotide. An NMR structural study showed that the incorporation of two isolated P·Z pairs enlarges the minor groove and slightly narrows the major groove at the site of this synthetic genetic information, relative to a DNA duplex consisting entirely of Watson-Crick base-pairs. Pyrrole-imidazole polyamides bind to a P·Z-containing DNA duplex to form a stable complex, effectively mimicking a G·C pair. A structural hallmark of minor groove recognition of a P·Z pair by a polyamide is the reduced level of allosteric distortion induced by binding of a polyamide to a DNA duplex. Understanding the molecular determinants that influence minor groove recognition of DNA containing synthetic genetic components provides the basis to further develop unnatural base-pairs for synthetic biology applications.


Asunto(s)
ADN/metabolismo , Imidazoles/metabolismo , Nylons/metabolismo , Pirroles/metabolismo , Emparejamiento Base , Sitios de Unión , ADN/química , ADN/genética , Enlace de Hidrógeno , Imidazoles/química , Resonancia Magnética Nuclear Biomolecular , Nylons/química , Pirroles/química
8.
Chem Sci ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39234214

RESUMEN

Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT-2). Structural analysis in combination with substrate profiling, identified the constraints on pyrimidine and purine acceptor bases by LlNDT2. A solvent screen identifies pure water as a suitable solvent for the preparation of high value purine and pyrimidine 2'-deoxyribonucleoside analogues on a gram scale under optimized reaction conditions. This approach provides the basis to establish a convergent, step-efficient chemoenzymatic platform for the preparation of high value 2'-deoxyribonucleosides.

9.
Front Mol Biosci ; 11: 1325041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419689

RESUMEN

Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.

10.
Angew Chem Weinheim Bergstr Ger ; 135(50): e202313063, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38515866

RESUMEN

Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.

11.
ACS Nano ; 17(1): 752-759, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537902

RESUMEN

An orthogonal, noncovalent approach to direct the assembly of higher-order DNA origami nanostructures is described. By incorporating perfluorinated tags into the edges of DNA origami tiles we control their hierarchical assembly via fluorous-directed recognition. When we combine this approach with Watson-Crick base-pairing we form discrete dimeric constructs in significantly higher yield (8x) than when either molecular recognition method is used in isolation. This integrated "catch-and-latch" approach, which combines the strength and mobility of the fluorous effect with the specificity of base-pairing, provides an additional toolset for DNA nanotechnology, one that enables increased assembly efficiency while requiring significantly fewer DNA sequences. As a result, our integration of fluorous-directed assembly into origami systems represents a cheap, atom-efficient means to produce discrete superstructures.


Asunto(s)
Nanoestructuras , Conformación de Ácido Nucleico , Nanoestructuras/química , ADN/química , Nanotecnología/métodos , Emparejamiento Base
12.
Front Mol Biosci ; 9: 943105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060245

RESUMEN

The BCL2L1 gene expresses two isoforms of Bcl-x protein via the use of either of two alternative 5' splice sites (5'ss) in exon 2. These proteins have antagonistic actions, Bcl-XL being anti-apoptotic and Bcl-XS pro-apoptotic. In a number of cancers the Bcl-XL isoform is over-expressed, resulting in cancer cell survival and growth, so switching splicing to the Xs isoform could have therapeutic benefits. We have previously proposed that a putative G-quadruplex (G4) exists downstream of the XS 5'ss and shown that the ellipticine derivative GQC-05, a previously identified DNA G4-specific ligand, induces an increase in the XS/XL ratio both in vitro and in cells. Here, we demonstrate that this G4 forms in vitro and that the structure is stabilised in the presence of GQC-05. We also show that GQC-05 binds RNA non-specifically in buffer conditions, but selectively to the Bcl-x G4 in the presence of nuclear extract, highlighting the limitations of biophysical measurements taken outside of a functional environment. We also demonstrate that GQC-05 is able to shift the equilibrium between competing G4 and duplex structures towards the G4 conformation, leading to an increase in accessibility of the XS 5'ss, supporting our previous model on the mechanism of action of GQC-05.

13.
Trials ; 21(1): 935, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213530

RESUMEN

OBJECTIVES: The GETAFIX trial will test the hypothesis that favipiravir is a more effective treatment for COVID-19 infection in patients who have early stage disease, compared to current standard of care. This study will also provide an important opportunity to investigate the safety and tolerability of favipiravir, the pharmacokinetic and pharmacodynamic profile of this drug and mechanisms of resistance in the context of COVID-19 infection, as well as the effect of favipiravir on hospitalisation duration and the post COVID-19 health and psycho-social wellbeing of patients recruited to the study. TRIAL DESIGN: GETAFIX is an open label, parallel group, two arm phase II/III randomised trial with 1:1 treatment allocation ratio. Patients will be randomised to one of two arms and the primary endpoint will assess the superiority of favipiravir plus standard treatment compared to standard treatment alone. PARTICIPANTS: This trial will recruit adult patients with confirmed positive valid COVID-19 test, who are not pregnant or breastfeeding and have no prior major co-morbidities. This is a multi-centre trial, patients will be recruited from in-patients and outpatients from three Glasgow hospitals: Royal Alexandra Hospital; Queen Elizabeth University Hospital; and the Glasgow Royal Infirmary. Patients must meet all of the following criteria: 1. Age 16 or over at time of consent 2. Exhibiting symptoms associated with COVID-19 3. Positive for SARS-CoV-2 on valid COVID-19 test 4. Point 1, 2, 3, or 4 on the WHO COVID-19 ordinal severity scale at time of randomisation. (Asymptomatic with positive valid COVID-19 test, Symptomatic Independent, Symptomatic assistance needed, Hospitalized, with no oxygen therapy) 5. Have >=10% risk of death should they be admitted to hospital as defined by the ISARIC4C risk index: https://isaric4c.net/risk 6. Able to provide written informed consent 7. Negative pregnancy test (women of childbearing potential*) 8. Able to swallow oral medication Patients will be excluded from the trial if they meet any of the following criteria: 1. Renal impairment requiring, or likely to require, dialysis or haemofiltration 2. Pregnant or breastfeeding 3. Of child bearing potential (women), or with female partners of child bearing potential (men) who do not agree to use adequate contraceptive measures for the duration of the study and for 3 months after the completion of study treatment 4. History of hereditary xanthinuria 5. Other patients judged unsuitable by the Principal Investigator or sub-Investigator 6. Known hypersensitivity to favipiravir, its metabolites or any excipients 7. Severe co-morbidities including: patients with severe hepatic impairment, defined as: • greater than Child-Pugh grade A • AST or ALT > 5 x ULN • AST or ALT >3 x ULN and Total Bilirubin > 2xULN 8. More than 96 hours since first positive COVID-19 test sample was taken 9. Unable to discontinue contra-indicated concomitant medications This is a multi-centre trial, patients will be recruited from in-patients and outpatients from three Glasgow hospitals: Royal Alexandra Hospital; Queen Elizabeth University Hospital; and the Glasgow Royal Infirmary. INTERVENTION AND COMPARATOR: Patients randomised to the experimental arm of GETAFIX will receive standard treatment for COVID-19 at the discretion of the treating clinician plus favipiravir. These patients will receive a loading dose of favipiravir on day 1 of 3600mg (1800mg 12 hours apart). On days 2-10, patients in the experimental arm will receive a maintenance dose of favipiravir of 800mg 12 hours apart (total of 18 doses). Patients randomised to the control arm of the GETAFIX trial will receive standard treatment for COVID-19 at the discretion of the treating clinician. MAIN OUTCOMES: The primary outcome being assessed in the GETAFIX trial is the efficacy of favipiravir in addition to standard treatment in patients with COVID-19 in reducing the severity of disease compared to standard treatment alone. Disease severity will be assessed using WHO COVID 10 point ordinal severity scale at day 15 +/- 48 hours. All randomised participants will be followed up until death or 60 days post-randomisation (whichever is sooner). RANDOMISATION: Patients will be randomised 1:1 to the experimental versus control arm using computer generated random sequence allocation. A minimisation algorithm incorporating a random component will be used to allocate patients. The factors used in the minimisation will be: site, age (16-50/51-70/71+), history of hypertension or currently obsess (BMI>30 or obesity clinically evident; yes/no), 7 days duration of symptoms (yes/no/unknown), sex (male/female), WHO COVID-19 ordinal severity score at baseline (1/2or 3/4). BLINDING (MASKING): No blinding will be used in the GETAFIX trial. Both participants and those assessing outcomes will be aware of treatment allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): In total, 302 patients will be randomised to the GETAFIX trial: 151 to the control arm and 151 to the experimental arm. There will be an optional consent form for patients who may want to contribute to more frequent PK and PD sampling. The maximum number of patients who will undergo this testing will be sixteen, eight males and eight females. This option will be offered to all patients who are being treated in hospital at the time of taking informed consent, however only patients in the experimental arm of the trial will be able to undergo this testing. TRIAL STATUS: The current GETAFIX protocol is version 4.0 12th September 2020. GETAFIX opened to recruitment on 26th October 2020 and will recruit patients over a period of approximately six months. TRIAL REGISTRATION: GETAFIX was registered on the European Union Drug Regulating Authorities Clinical Trials (EudraCT) Database on 15th April 2020; Reference number 2020-001904-41 ( https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001904-41/GB ). GETAFIX was registered on ISRCTN on 7th September 2020; Reference number ISRCTN31062548 ( https://www.isrctn.com/ISRCTN31062548 ). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (see Additional file 2).


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Pirazinas/uso terapéutico , Adulto , Amidas/administración & dosificación , Amidas/farmacocinética , Amidas/farmacología , Antivirales/administración & dosificación , Antivirales/farmacocinética , Antivirales/farmacología , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Estudios de Casos y Controles , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Hospitalización , Humanos , Masculino , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/epidemiología , Neumonía Viral/virología , Pirazinas/administración & dosificación , Pirazinas/farmacocinética , Pirazinas/farmacología , SARS-CoV-2 , Seguridad , Escocia/epidemiología , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
14.
Org Lett ; 19(14): 3759-3762, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28682638

RESUMEN

Two Pd-catalyzed methods to access 6-heteroaryl 2-aminopurine ribonucleosides from 6-chloroguanosine are described. First, Pd-132-catalyzed Suzuki-Miyaura cross-coupling using a series of boron substrates and 6-chloroguanosine forms 6-heteroaryl-2-aminopurines in a single step. The versatility of 6-chloroguanosine is further demonstrated using a modified Sonogashira coupling employing potassium iodide as an additive. Finally, the utility of the 6-alkynyl-2-aminopurine ribonucleoside as a dipolarophile in [3 + 2] cycloadditions is presented, affording triazoles and isoxazoles when reacted with azide and isonitrile 1,3-dipoles, respectively.


Asunto(s)
Ribonucleósidos/química , 2-Aminopurina , Catálisis , Reactivos de Enlaces Cruzados , Estructura Molecular , Paladio
15.
J Med Chem ; 58(4): 1940-9, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25642604

RESUMEN

Dicationic acridone derivatives were synthesized and their antiparasitic activity was evaluated. Acridones displayed in vitro nanomolar IC50 values against Trypanosoma brucei rhodesiense STIB900 with selectivity indices >1000. Compounds 1b, 3a, and 3b were as potent as the reference drug melarsoprol in this assay. Submicromolar-range activities were observed against wild-type (NF54) and resistant (K1) strains of Plasmodium falciparum, whereas no significant activity was detected against Trypanosoma cruzi or Leishmania donovani. Compounds 1a and 1b were curative in the STIB900 mouse model for human African trypanosomiasis. UV spectrophotometric titrations and circular dichroism (CD) experiments with fish sperm (FS) DNA showed that these compounds form complexes with DNA with binding affinities in the 10(4) M(-1) range. Biological and biophysical data show that antiparasitic activity, toxicity, and DNA binding of this series of acridones are dependent on the relative position of both imidazolinium cations on the heterocyclic scaffold.


Asunto(s)
Acridinas/farmacología , Antiprotozoarios/farmacología , ADN/efectos de los fármacos , Acridinas/síntesis química , Acridinas/química , Acridonas , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Sitios de Unión/efectos de los fármacos , Cationes/síntesis química , Cationes/química , Cationes/farmacología , ADN/química , Relación Dosis-Respuesta a Droga , Leishmania donovani/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA