Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 30(12): 4306-14, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20335466

RESUMEN

Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST(3). We show here that SST(3) is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST(3) antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST(3), we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST(3) antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST(3) antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST(3) agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection.


Asunto(s)
Locomoción/fisiología , Neuronas/citología , Reconocimiento en Psicología/fisiología , Transducción de Señal/fisiología , Somatostatina/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Adenilil Ciclasas/metabolismo , Amidas/farmacología , Animales , Conducta Animal , Bicuculina/análogos & derivados , Bicuculina/farmacología , Biofisica/métodos , Región CA1 Hipocampal/citología , Cilios/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Discriminación en Psicología , Estimulación Eléctrica/métodos , Femenino , Antagonistas del GABA/farmacología , Técnicas In Vitro , Isoquinolinas/farmacología , Locomoción/efectos de los fármacos , Locomoción/genética , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pruebas Neuropsicológicas , Nitrobencenos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/deficiencia , Receptores de Somatostatina/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
J Neurosci ; 29(24): 7633-8, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535574

RESUMEN

Spinal muscular atrophy (SMA) is caused by homozygous mutation or deletion of the SMN1 gene encoding survival of motor neuron (SMN) protein, resulting in the selective loss of alpha-motor neurons. Humans typically have one or more copies of the SMN2 gene, the coding region of which is nearly identical to SMN1, except that a point mutation causes splicing out of exon 7 and production of a largely nonfunctional SMNDelta7 protein. The development of drugs that mitigate aberrant SMN2 splicing is an attractive therapeutic approach for SMA. A steric block antisense oligonucleotide (AO) has recently been developed that blocked an intronic splice suppressor element, and enhanced SMN2 exon 7 inclusion in SMA patient fibroblasts. Here, we show that periodic intracerebroventricular (ICV) delivery of this AO resulted in increased SMN expression in brain and spinal cord to as much as 50% of the level of healthy littermates. Real-time PCR of SMN2 transcripts confirmed the AO-mediated increase in full-length SMN. The AO-derived increase in SMN expression led to a concomitant improvement in bodyweight throughout the lifespan of the SMA animals. Treatment of SMA mice with AO also provided partial correction of motor deficits, manifest as improved righting response. Injections of a scrambled oligonucleotide had no effect on SMN expression or phenotype in the SMA mice. Our results validate that AOs that abrogate aberrant splicing of SMN2 are promising compounds for treating SMA.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Atrofia Muscular Espinal/patología , Oligonucleótidos Antisentido/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Exones , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Inyecciones Intraventriculares/métodos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Fenotipo , Mutación Puntual/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
3.
J Neurosci ; 28(14): 3567-76, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385315

RESUMEN

The K(+) M-current (I(M), Kv7) is an important regulator of cortical excitability, and mutations in these channels cause a seizure disorder in humans. The neuropeptide somatostatin (SST), which has antiepileptic properties, augments I(M) in hippocampal CA1 pyramidal neurons. We used SST receptor knock-out mice and subtype-selective ligands to investigate the receptor subtype that couples to I(M) and mediates the antiepileptic effects of SST. Using pentylenetetrazole as a chemoconvulsant, SST(2), SST(3), and SST(4) receptor knock-out mice all had shorter latencies to different seizure stages and increased seizure severity when compared with wild-type mice. However, the most robust differences were observed in the SST(4) knock-outs. When seizures were induced by systemic injection of kainate, only SST(4) knock-outs showed an increase in seizure sensitivity. We next examined the action of SST and subtype-selective SST agonists on electrophysiological parameters in hippocampal slices of wild-type and receptor knock-out mice. SST(2) and SST(4) appear to mediate the majority of SST inhibition of epileptiform activity in CA1. SST lacked presynaptic effects in mouse CA1, in contrast to our previous findings in rat. SST increased I(M) in CA1 pyramidal neurons of wild-type and SST(2) knock-out mice, but not SST(4) knock-out mice. Using M-channel blockers, we found that SST(4) coupling to M-channels is critical to its inhibition of epileptiform activity. This is the first demonstration of an endogenous enhancer of I(M) that is important in controlling seizure activity. SST(4) receptors could therefore be an important novel target for developing new antiepileptic and antiepileptogenic drugs.


Asunto(s)
Potenciales de la Membrana/fisiología , Proteínas de la Membrana/fisiología , Canales de Potasio/fisiología , Receptores de Somatostatina/fisiología , Convulsiones/fisiopatología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Técnicas In Vitro , Ácido Kaínico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de la radiación , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Pentilenotetrazol , Potasio/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/efectos de la radiación , Ratas , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptores de Somatostatina/clasificación , Receptores de Somatostatina/deficiencia , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/patología
4.
Prog Brain Res ; 163: 265-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17765724

RESUMEN

The neuropeptide somatostatin (SST) is expressed in a discrete population of interneurons in the dentate gyrus. These interneurons have their soma in the hilus and project to the outer molecular layer onto dendrites of dentate granule cells, adjacent to perforant path input. SST-containing interneurons are very sensitive to excitotoxicty, and thus are vulnerable to a variety of neurological diseases and insults, including epilepsy, Alzheimer's disease, traumatic brain injury, and ischemia. The SST gene contains a prototypical cyclic AMP response element (CRE) site. Such a regulatory site confers activity-dependence to the gene, such that it is turned on when neuronal activity is high. Thus SST expression is increased by pathological conditions such as seizures and by natural stimulation such as environmental enrichment. SST may play an important role in cognition by modulating the response of neurons to synaptic input. In the dentate, SST and the related peptide cortistatin (CST) reduce the likelihood of generating long-term potentiation, a cellular process involved in learning and memory. Thus these neuropeptides would increase the threshold of input required for acquisition of new memories, increasing "signal to noise" to filter out irrelevant environmental cues. The major mechanism through which SST inhibits LTP is likely through inhibition of voltage-gated Ca(2+) channels on dentate granule cell dendrites. Transgenic overexpression of CST in the dentate leads to profound deficits in spatial learning and memory, validating its role in cognitive processing. A reduction of synaptic potentiation by SST and CST in dentate may also contribute to the well-characterized antiepileptic properties of these neuropeptides. Thus SST and CST are important neuromodulators in the dentate gyrus, and disruption of this signaling system may have major impact on hippocampal function.


Asunto(s)
Giro Dentado/metabolismo , Somatostatina/metabolismo , Animales , Giro Dentado/citología , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología
5.
PLoS One ; 12(2): e0171538, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28178321

RESUMEN

Glutamate-activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) mediate the majority of excitatory neurotransmission in brain and thus are major drug targets for diseases associated with hyperexcitability or neurotoxicity. Due to the critical nature of AMPA-Rs in normal brain function, typical AMPA-R antagonists have deleterious effects on cognition and motor function, highlighting the need for more precise modulators. A dramatic increase in the flip isoform of alternatively spliced AMPA-R GluA1 subunits occurs post-seizure in humans and animal models. GluA1-flip produces higher gain AMPA channels than GluA1-flop, increasing network excitability and seizure susceptibility. Splice modulating oligonucleotides (SMOs) bind to pre-mRNA to influence alternative splicing, a strategy that can be exploited to develop more selective drugs across therapeutic areas. We developed a novel SMO, GR1, which potently and specifically decreased GluA1-flip expression throughout the brain of neonatal mice lasting at least 60 days after single intracerebroventricular injection. GR1 treatment reduced AMPA-R mediated excitatory postsynaptic currents at hippocampal CA1 synapses, without affecting long-term potentiation or long-term depression, cellular models of memory, or impairing GluA1-dependent cognition or motor function in mice. Importantly, GR1 demonstrated anti-seizure properties and reduced post-seizure hyperexcitability in neonatal mice, highlighting its drug candidate potential for treating epilepsies and other neurological diseases involving network hyperexcitability.


Asunto(s)
Empalme Alternativo , Oligonucleótidos/administración & dosificación , Receptores AMPA/genética , Convulsiones/genética , Convulsiones/fisiopatología , Animales , Animales Recién Nacidos , Secuencia de Bases , Cognición , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Ratones , Actividad Motora , Oligonucleótidos/química , Células Piramidales/metabolismo , Convulsiones/terapia , Transmisión Sináptica/genética
6.
Trends Neurosci ; 27(3): 135-42, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15036878

RESUMEN

Interneurons are often classified according to neuropeptide content. However, it is becoming increasingly clear that neuropeptides are more than convenient neurochemical markers and can act as important modulators of neuronal activity. Recent advances in understanding neuropeptide release and physiological actions suggest that the interneuronal system of neuropeptides is crucial for maintaining appropriate brain function under normal and pathophysiological conditions. In particular, interneuronal neuropeptides appear to play roles in cognition and as endogenous anti-epileptic agents. This article describes current understanding of the conditions under which neuropeptides are released from interneurons, their specific effects on neuronal excitability and synaptic transmission, and the consequences of their loss of function.


Asunto(s)
Encéfalo/fisiología , Interneuronas/clasificación , Interneuronas/fisiología , Neuropéptidos/fisiología , Animales , Encefalopatías/fisiopatología , Epilepsia/metabolismo , Epilepsia/fisiopatología , Inhibición Neural , Neuropéptido Y/fisiología , Somatostatina/fisiología , Transmisión Sináptica/fisiología
7.
J Biol Chem ; 284(1): 174-181, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19004831

RESUMEN

O-Linked N-acetylglucosamine (O-GlcNAc) is a cytosolic and nuclear carbohydrate post-translational modification most abundant in brain. We recently reported uniquely extensive O-GlcNAc modification of proteins that function in synaptic vesicle release and post-synaptic signal transduction. Here we examined potential roles for O-GlcNAc in mouse hippocampal synaptic transmission and plasticity. O-GlcNAc modifications and the enzyme catalyzing their addition (O-GlcNAc transferase) were enriched in hippocampal synaptosomes. Pharmacological elevation or reduction of O-GlcNAc levels had no effect on Schaffer collateral CA1 basal hippocampal synaptic transmission. However, in vivo elevation of O-GlcNAc levels enhanced long term potentiation (LTP), an electrophysiological correlate to some forms of learning/memory. Reciprocally, pharmacological reduction of O-GlcNAc levels blocked LTP. Additionally, elevated O-GlcNAc led to reduced paired-pulse facilitation, a form of short term plasticity attributed to presynaptic mechanisms. Synapsin I and II are presynaptic proteins that increase synaptic vesicle availability for release when phosphorylated, thus contributing to hippocampal synaptic plasticity. Synapsins are among the most extensively O-GlcNAc-modified proteins known. Elevating O-GlcNAc levels increased phosphorylation of Synapsin I/II at serine 9 (cAMP-dependent protein kinase substrate site), serine 62/67 (Erk 1/2 (MAPK 1/2) substrate site), and serine 603 (calmodulin kinase II site). Activation-specific phosphorylation events on Erk 1/2 and calmodulin kinase II, two proteins required for CA1 hippocampal LTP establishment, were increased in response to elevation of O-GlcNAc levels. Thus, O-GlcNAc is a novel regulatory signaling component of excitatory synapses, with specific roles in synaptic plasticity that involve interplay with phosphorylation.


Asunto(s)
Acetilglucosamina/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Transducción de Señal/fisiología , Vesículas Sinápticas/metabolismo , Sinaptosomas/metabolismo , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Aprendizaje/fisiología , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Sinapsinas/metabolismo
8.
Results Probl Cell Differ ; 44: 177-200, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17554500

RESUMEN

Neuropeptides are signaling molecules that interact with G-protein coupled receptors located both pre- and postsynaptically. Presynaptically, these receptors are localized in axons and terminals away from presynaptic specializations. Neuropeptides are stored in dense core vesicles that are distinct from the clear synaptic vesicles containing classic neurotransmitters such as glutamate and GABA. Because they require a stronger Ca(2+) signal than synaptic vesicles, dense core vesicles do not release neuropeptides with single action potentials but rather require high-frequency trains. Thus, neuropeptides only modulate strongly stimulated synapses, providing negative or positive feedback. Many neuropeptides have been found to inhibit glutamate release from presynaptic terminals, and the major mechanism is likely direct interaction of betagamma G-protein subunits with presynaptic proteins such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). The use of mouse genetic models and specific receptor antagonists are beginning to unravel the function of inhibitory neuropeptides. The opioid receptors kappa and mu, which are activated by endogenous opioid peptides such as dynorphin, enkephalin, and possibly the endomorphins, are important in modulating pain transmission. Dynorphin, nociceptin/orphanin FQ, and somatostatin and its related peptide cortistatin appear to play a role in modulation of learning and memory. Neuropeptide Y has important functions in ingestive behavior and also in entraining circadian rhythms. The existence of neuropeptides greatly expands the computational ability of the brain by providing additional levels of modulation.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuropéptidos/fisiología , Terminales Presinápticos/fisiología , Receptores de Neuropéptido/fisiología , Transmisión Sináptica/fisiología , Animales , Conducta Animal/fisiología , Señalización del Calcio/fisiología , Ratones , Proteínas SNARE/metabolismo
9.
Mol Cell Endocrinol ; 286(1-2): 96-103, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18221832

RESUMEN

The neuropeptide somatostatin (SST) is highly expressed in brain regions associated with seizures. In hippocampus, SST expression and release is regulated by seizures, and SST-containing neurons within the hilus of the dentate gyrus are sensitive to seizure-induced death. In vivo and in vitro studies suggest that the loss of SST function in the dentate could contribute to epileptogenesis and seizure susceptibility. SST also has inhibitory actions in the CA1 and CA3 hippocampus indicating this peptide is an important homeostatic regulator throughout the hippocampus. In vivo studies show SST has robust antiepileptic properties with the major site of action being hippocampus. In rodents, somatostatin receptor subtype 2 (SST(2)) and SST(4) appear to mediate the majority of the antiepileptic actions of SST, with SST(2) predominate in rat and SST(4) in mouse. Thus SST receptors may be appropriate targets for new antiepileptic drugs (AEDs), although validation in human tissue is lacking.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/metabolismo , Hipocampo/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/fisiología , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Giro Dentado/patología , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Receptores de Somatostatina/agonistas , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/patología
10.
Epilepsia ; 48(11): 2047-58, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17651418

RESUMEN

PURPOSE: Loss-of-function mutations in Kv7.2 or Kv7.3 K(+) channel subunits underlies the neonatal epilepsy benign familial neonatal convulsions (BFNC). These two subunits interact to form a functional K(+) channel that underlies the M-current (I(M)), a voltage-dependent noninactivating K(+) current. In BFNC, seizures begin shortly after birth, and spontaneously remit in the first few months of life. The nature of this window of vulnerability is unclear. We address this issue using a hippocampal slice model, to study the effects of I(M) blockade or augmentation on epileptiform activity. METHODS: We used the Mg(+)(+)-free seizure model in adult and immature (P8-P15) acute rat hippocampal slices. We recorded from both CA1 and CA3 regions using extracellular and intracellular methods. RESULTS: When M-channels are blocked pharmacologically, the transition from interictal to ictal bursting becomes much more likely, especially in immature brain. We also show augmentation of I(M) is effective in stopping ictal events in immature brain, at the developmental age that approximates a human newborn in cortical development. I(M) appears to counter the sustained N-methyl-D-aspartate (NMDA) receptor-mediated depolarizations needed to trigger an ictal event. The increased likelihood of ictal bursting by I(M) blockade is not shared by other selective K(+) channel blockers that increase hippocampal excitability. CONCLUSIONS: Voltage-dependent M-channels are activated during interictal bursts and contribute to burst termination. When these channels are compromised, interictal burst duration becomes sufficient to trigger the sustained depolarizations that underlie ictal bursts. This transition to ictal bursts upon I(M) blockade is especially likely to occur in immature hippocampus. This selective function of M-channels likely contributes to the transient window of vulnerability to seizures that occurs with BFNC.


Asunto(s)
Epilepsia Benigna Neonatal/fisiopatología , Hipocampo/fisiopatología , Canales de Potasio con Entrada de Voltaje/genética , Convulsiones/genética , Convulsiones/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Anticonvulsivantes/farmacología , Carbamatos/farmacología , Modelos Animales de Enfermedad , Epilepsia Benigna Neonatal/genética , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Humanos , Indoles/farmacología , Masculino , Mutación/genética , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/fisiología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología
11.
Mol Cell Neurosci ; 30(3): 465-75, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16182561

RESUMEN

Cortistatin-14 (CST) is a neuropeptide expressed in cortical and hippocampal interneurons that shares 11 of 14 residues with somatostatin. In contrast to somatostatin, infusion of CST decreases locomotor activity and selectively enhances slow wave sleep. Here, we show that transgenic mice that overexpress cortistatin under the control of neuron-specific enolase promoter do not express long-term potentiation in the dentate gyrus. This blockade of dentate LTP correlates with profound impairment of hippocampal-dependent spatial learning. Exogenously applied CST to slices of wild-type mice also blocked induction of LTP in the dentate gyrus. Our findings implicate cortistatin in the modulation of synaptic plasticity and cognitive function. Thus, increases in hippocampal cortistatin expression during aging could have an impact on age-related cognitive deficits.


Asunto(s)
Hipocampo/metabolismo , Discapacidades para el Aprendizaje/genética , Aprendizaje/fisiología , Potenciación a Largo Plazo/genética , Péptidos/metabolismo , Transmisión Sináptica/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular , Discapacidades para el Aprendizaje/metabolismo , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Transgénicos , Péptidos/genética , Regiones Promotoras Genéticas/genética
12.
J Neurophysiol ; 88(6): 3078-86, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12466431

RESUMEN

The selective loss of somatostatin (SST)-containing interneurons from the hilus of the dentate gyrus is a hallmark of epileptic hippocampus. The functional consequence of this loss, including its contribution to postseizure hyperexcitability, remains unclear. We address this issue by characterizing the actions of SST in mouse dentate gyrus using electrophysiological techniques. Although the majority of dentate SST receptors are located in the outer molecular layer adjacent to lateral perforant path (LPP) synapses, we found no consistent action of SST on standard synaptic responses generated at these synapses. However, when SST was present during application of high-frequency trains that normally generate long-term potentiation (LTP), the induction of LTP was impaired. SST did not alter the maintenance of LTP when applied after its induction. To examine the mechanism by which SST inhibits LTP, we recorded from dentate granule cells and examined the actions of this neuropeptide on synaptic transmission and postsynaptic currents. Unlike findings in the CA1 hippocampus, we observed no postsynaptic actions on K(+) currents. Instead, SST inhibited Ca(2+)/Ba(2+) spikes evoked by depolarization. This inhibition was dependent on N-type Ca(2+)currents. Blocking these currents also blocked LTP, suggesting a mechanism through which SST may inhibit LTP. Our results indicate that SST reduction of dendritic Ca(2+) through N-type Ca(2+) channels may contribute to modulation of synaptic plasticity at LPP synapses. Therefore the loss of SST function postseizure could result in abnormal synaptic potentiation that contributes to epileptogenesis.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Hormonas/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Somatostatina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones , Vía Perforante/efectos de los fármacos , Vía Perforante/fisiología
13.
Proc Natl Acad Sci U S A ; 100(4): 2053-8, 2003 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-12566570

RESUMEN

We examined the interaction of ethanol with the gamma-aminobutyric acid (GABA)ergic system in neurons of slices of the rat central amygdala nucleus (CeA), a brain region thought to be critical for the reinforcing effects of ethanol. Brief superfusion of 11-66 mM ethanol significantly increased GABA type A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) in most CeA neurons, with a low apparent EC(50) of 20 mM. Acute superfusion of 44 mM ethanol increased the amplitude of evoked GABA(A) IPSPs and IPSCs in 70% of CeA neurons. The ethanol enhancement of IPSPs and IPSCs occurred to a similar extent in the presence of the GABA type B (GABA(B)) receptor antagonist CGP 55845A, suggesting that this receptor is not involved in the ethanol effect on CeA neurons. Ethanol superfusion also decreased paired-pulse facilitation of evoked GABA(A) IPSPs and IPSCs and always increased the frequency and sometimes the amplitude of spontaneous miniature GABA(A) IPSCs as well as responses to local GABA application, indicating both presynaptic and postsynaptic sites of action for ethanol. Thus, the CeA is the first brain region to reveal, without conditional treatments such as GABA(B) antagonists, consistent, low-dose ethanol enhancement of GABAergic transmission at both pre- and postsynaptic sites. These findings add further support to the contention that the ethanol-GABA interaction in CeA plays an important role in the reinforcing effects of ethanol.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Etanol/farmacología , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Potenciales Evocados , Técnicas In Vitro , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA