Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Proced Online ; 21: 22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807121

RESUMEN

BACKGROUND: IRE1α-mediated unconventional splicing of XBP1 is emerging as a biomarker in several disease states and is indicative of activation of the unfolded protein response sensor IRE1. Splicing of XBP1 mRNA results in the translation of two distinct XBP1 protein isoforms (XBP1s and XBP1u) which, due to post-translational regulation, do not correlate with mRNA levels. As both XBP1 isoforms are implicated in pathogenic or disease progression mechanisms there is a need for a reliable, clinically applicable method to detect them. METHODS: A multiplexed isoform-specific XBP1 array utilising Biochip array technology (BAT™) was assessed for specificity and suitability when using cell protein lysates. The array was applied to RIPA protein lysates from several relevant pre-clinical models with an aim to quantify XBP1 isoforms in comparison with RT-PCR or immunoblot reference methods. RESULTS: A novel reliable, specific and sensitive XBP1 biochip was successfully utilised in pre-clinical research. Application of this biochip to detect XBP1 splicing at the protein level in relevant breast cancer models, under basal conditions as well as pharmacological inhibition and paclitaxel induction, confirmed the findings of previous studies. The biochip was also applied to non-adherent cells and used to quantify changes in the XBP1 isoforms upon activation of the NLRP3 inflammasome. CONCLUSIONS: The XBP1 biochip enables isoform specific quantification of protein level changes upon activation and inhibition of IRE1α RNase activity, using a routine clinical methodology. As such it provides a research tool and potential clinical tool with a quantified, simultaneous, rapid output that is not available from any other published method.

2.
Cancers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445669

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.

3.
Cell Death Dis ; 11(1): 12, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907350

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Cell Death Dis ; 10(9): 622, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31417078

RESUMEN

The inflammasome is a multiprotein complex assembled in response to Pathogen Associated Molecular Patterns (PAMPs) and Danger Associated Molecular Patterns (DAMPs). Inflammasome activation occurs through a two-step mechanism, with the first signal facilitating priming of inflammasome components while the second signal triggers complex assembly. Once assembled, the inflammasome recruits and activates pro-caspase-1, which in turn processes pro-interleukin (IL)-18 and pro-IL-1ß into their bio-active forms. Owing to its key role in the regulation of innate immune responses, the inflammasome has emerged as a therapeutic target for the treatment of inflammatory conditions. In this study we demonstrate that IRE1α, a key component of the Unfolded Protein Response, contributes to assembly of the NLRP3 inflammasome. Blockade of IRE1α RNase signaling lowered NLRP3 inflammasome assembly, caspase-1 activation and pro-IL-1ß processing. These results underscore both the importance and potential therapeutic relevance of targeting IRE1α signaling in conditions of excessive inflammasome formation.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Inflamasomas/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Humanos , Inflamasomas/efectos de los fármacos , Lipopolisacáridos/farmacología , Nigericina/farmacología , Transducción de Señal , Células THP-1 , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA