Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Exp Eye Res ; 239: 109760, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158174

RESUMEN

Rod and cone photoreceptors are named for the distinct morphologies of their outer segment organelles, which are either cylindrical or conical, respectively. The morphologies of the stacked disks that comprise the rod and cone outer segments also differ: rod disks are completely sealed and are discontinuous from the plasma membrane, while cone disks remain partially open to the extracellular space. These morphological differences between photoreceptor types are more prominent in non-mammalian vertebrates, whose cones typically possess a greater proportion of open disks and are more tapered in shape. In mammals, the tetraspanin prph2 generates and maintains the highly curved disk rim regions by forming extended oligomeric structures with itself and a structurally similar paralog, rom1. Here we determined that in addition to these two proteins, there is a third Prph2 family paralog in most non-mammalian vertebrate species, including X. laevis: Glycoprotein 2-like protein or "Gp2l". A survey of multiple genome databases revealed a single invertebrate Prph2 'pro-ortholog' in Amphioxus, several echinoderms and in a diversity of protostomes indicating an ancient divergence from other tetraspanins. Based on phylogenetic analysis, duplication of the vertebrate predecessor likely gave rise to the Gp2l and Prph2/Rom1 clades, with a further duplication distinguishing the Prph2 and Rom1 clades. Mammals have lost Gp2l and their Rom1 has undergone a period of accelerated evolution such that it has lost several features that are retained in non-mammalian vertebrate Rom1. Specifically, Prph2, Gp2l and non-mammalian Rom1 encode proteins with consensus N-linked glycosylation and outer segment localization signals; mammalian rom1 lacks these motifs. We determined that X. laevis gp2l is expressed exclusively in cones and green rods, while X. laevis rom1 is expressed exclusively in rods, and prph2 is present in both rods and cones. The presence of three Prph2-related genes with distinct expression patterns as well as the rapid evolution of mammalian Rom1, may contribute to the more pronounced differences in morphology between rod and cone outer segments and rod and cone disks observed in non-mammalian versus mammalian vertebrates.


Asunto(s)
Degeneración Retiniana , Animales , Duplicación de Gen , Mamíferos , Periferinas/genética , Periferinas/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/metabolismo , Tetraspaninas/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
2.
J Cell Sci ; 131(24)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30404838

RESUMEN

The Arf4-rhodopsin complex (mediated by the VxPx motif in rhodopsin) initiates expansion of vertebrate rod photoreceptor cilia-derived light-sensing organelles through stepwise assembly of a conserved trafficking network. Here, we examine its role in the sorting of VAMP7 (also known as TI-VAMP) - an R-SNARE possessing a regulatory longin domain (LD) - into rhodopsin transport carriers (RTCs). During RTC formation and trafficking, VAMP7 colocalizes with the ciliary cargo rhodopsin and interacts with the Rab11-Rabin8-Rab8 trafficking module. Rab11 and Rab8 bind the VAMP7 LD, whereas Rabin8 (also known as RAB3IP) interacts with the SNARE domain. The Arf/Rab11 effector FIP3 (also known as RAB11FIP3) regulates VAMP7 access to Rab11. At the ciliary base, VAMP7 forms a complex with the cognate SNAREs syntaxin 3 and SNAP-25. When expressed in transgenic animals, a GFP-VAMP7ΔLD fusion protein and a Y45E phosphomimetic mutant colocalize with endogenous VAMP7. The GFP-VAMP7-R150E mutant displays considerable localization defects that imply an important role of the R-SNARE motif in intracellular trafficking, rather than cognate SNARE pairing. Our study defines the link between VAMP7 and the ciliary targeting nexus that is conserved across diverse cell types, and contributes to general understanding of how functional Arf and Rab networks assemble SNAREs in membrane trafficking.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Cilios/metabolismo , Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Orgánulos/metabolismo , Transporte de Proteínas/fisiología , Proteínas R-SNARE/metabolismo , Rodopsina/metabolismo
3.
J Neurosci ; 37(4): 1039-1054, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28490005

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal degeneration (RD) that leads to blindness for which no treatment is available. RP is frequently caused by mutations in Rhodopsin; in some animal models, RD is exacerbated by light. Valproic acid (VPA) is a proposed treatment for RP and other neurodegenerative disorders, with a phase II trial for RP under way. However, the therapeutic mechanism is unclear, with minimal research supporting its use in RP. We investigated the effects of VPA on Xenopus laevis models of RP expressing human P23H, T17M, T4K, and Q344ter rhodopsins, which are associated with RP in humans. VPA ameliorated RD associated with P23H rhodopsin and promoted clearing of mutant rhodopsin from photoreceptors. The effect was equal to that of dark rearing, with no additive effect observed. Rescue of visual function was confirmed by electroretinography. In contrast, VPA exacerbated RD caused by T17M rhodopsin in light, but had no effect in darkness. Effects in T4K and Q344ter rhodopsin models were also negative. These effects of VPA were paralleled by treatment with three additional histone deacetylase (HDAC) inhibitors, but not other antipsychotics, chemical chaperones, or VPA structural analogues. In WT retinas, VPA treatment increased histone H3 acetylation. In addition, electron microscopy showed increased autophagosomes in rod inner segments with HDAC inhibitor (HDACi) treatment, potentially linking the therapeutic effects in P23H rhodopsin animals and negative effects in other models with autophagy. Our results suggest that the success or failure of VPA treatment is dependent on genotype and that HDACi treatment is contraindicated for some RP cases.SIGNIFICANCE STATEMENT Retinitis pigmentosa (RP) is an inherited, degenerative retinal disease that leads to blindness for which no therapy is available. We determined that valproic acid (VPA), currently undergoing a phase II trial for RP, has both beneficial and detrimental effects in animal models of RP depending on the underlying disease mechanism and that both effects are due to histone deacetylase (HDAC) inhibition possibly linked to autophagy regulation. Off-label use of VPA and other HDAC inhibitors for the treatment of RP should be limited to the research setting until this effect is understood and can be predicted. Our study suggests that, unless genotype is accounted for, clinical trials for RP treatments may give negative results due to multiple disease mechanisms with differential responses to therapeutic interventions.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Retinitis Pigmentosa/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Animales , Autofagosomas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestructura , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Ácido Valproico/farmacología , Xenopus laevis
4.
FASEB J ; 29(12): 4866-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26229057

RESUMEN

In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3.


Asunto(s)
Cinesinas/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Cinesinas/química , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Células 3T3 NIH , Transporte de Proteínas , Rodopsina/metabolismo , Xenopus laevis
5.
J Neurosci ; 34(40): 13336-48, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274813

RESUMEN

Retinitis pigmentosa (RP) is an inherited neurodegenerative disease involving progressive vision loss, and is often linked to mutations in the rhodopsin gene. Mutations that abolish N-terminal glycosylation of rhodopsin (T4K and T17M) cause sector RP in which the inferior retina preferentially degenerates, possibly due to greater light exposure of this region. Transgenic animal models expressing rhodopsin glycosylation mutants also exhibit light exacerbated retinal degeneration (RD). In this study, we used transgenic Xenopus laevis to investigate the pathogenic mechanism connecting light exposure and RD in photoreceptors expressing T4K or T17M rhodopsin. We demonstrate that increasing the thermal stability of these rhodopsins via a novel disulfide bond resulted in significantly less RD. Furthermore, T4K or T17M rhodopsins that were constitutively inactive (due to lack of the chromophore-binding site or dietary deprivation of the chromophore precursor vitamin A) induced less toxicity. In contrast, variants in the active conformation accumulated in the ER and caused RD even in the absence of light. In vitro, T4K and T17M rhodopsins showed reduced ability to regenerate pigment after light exposure. Finally, although multiple amino acid substitutions of T4 abolished glycosylation at N2 but were not toxic, similar substitutions of T17 were not tolerated, suggesting that the carbohydrate moiety at N15 is critical for cell viability. Our results identify a novel pathogenic mechanism in which the glycosylation-deficient rhodopsins are destabilized by light activation. These results have important implications for proposed RP therapies, such as vitamin A supplementation, which may be ineffective or even detrimental for certain RP genotypes.


Asunto(s)
Luz , Mutación/genética , Degeneración Retiniana/etiología , Retinitis Pigmentosa , Rodopsina/genética , Segmento Externo de la Célula en Bastón/patología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Microscopía Confocal , Degeneración Retiniana/dietoterapia , Retinitis Pigmentosa/complicaciones , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Estadísticas no Paramétricas , Transfección , Vitamina A/administración & dosificación , Vitamina A/metabolismo , Aglutininas del Germen de Trigo/metabolismo , Xenopus laevis
6.
Exp Eye Res ; 136: 86-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26008144

RESUMEN

Transmission electron microscopy is the gold standard for examination of photoreceptor outer segment morphology and photoreceptor outer segment abnormalities in transgenic animal models of retinal disease. Small vertebrates such as zebrafish and Xenopus laevis tadpoles have been used to generate retinal disease models and to study outer segment processes such as protein trafficking, and their breeding capabilities facilitate experiments involving large numbers of animals and conditions. However, electron microscopy processing and analysis of these very small eyes can be challenging. Here we present a methodology that facilitates processing of X. laevis tadpole eyes for electron microscopy by introducing an intermediate cryosectioning step. This method reproducibly provides a well-oriented tissue block that can be sectioned with minimal effort by a non-expert, and also allows retroactive analysis of samples collected on slides for light microscopy.


Asunto(s)
Crioultramicrotomía/métodos , Retina/ultraestructura , Xenopus laevis , Animales , Técnicas de Preparación Histocitológica , Microscopía Electrónica de Transmisión , Adhesión del Tejido , Fijación del Tejido/métodos
7.
J Neurosci ; 32(6): 2121-8, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22323724

RESUMEN

This study evaluated the capacity of Xenopus laevis retina to regenerate photoreceptor cells after cyclic light-mediated acute rod photoreceptor degeneration in a transgenic P23H mutant rhodopsin model of retinits pigmentosa. After discontinuation of cyclic light exposure, we monitored histologic progression of retinal regeneration over a 3 week recovery period. To assess their metabolomic states, contralateral eyes were processed for computational molecular phenotyping. We found that retinal degeneration in the P23H rhodopsin mutation could be partially reversed, with regeneration of rod photoreceptors recovering normal morphology (including full-length rod outer segments) by the end of the 3 week recovery period. In contrast, retinal degeneration mediated by directly induced apoptosis did not recover in the 3 week recovery period. Dystrophic rod photoreceptors with truncated rod outer segments were identified as the likely source of rod photoreceptor regeneration in the P23H retinas. These dystrophic photoreceptors remain metabolically active despite having lost most of their outer segments.


Asunto(s)
Sustitución de Aminoácidos , Mutación , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Rodopsina/metabolismo , Sustitución de Aminoácidos/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Histidina/genética , Mutación/genética , Regeneración Nerviosa/genética , Prolina/genética , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/fisiología , Xenopus laevis
8.
EMBO J ; 28(3): 183-92, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19153612

RESUMEN

Dysfunctions of primary cilia and cilia-derived sensory organelles underlie a multitude of human disorders, including retinal degeneration, yet membrane targeting to the cilium remains poorly understood. Here, we show that the newly identified ciliary targeting VxPx motif present in rhodopsin binds the small GTPase Arf4 and regulates its association with the trans-Golgi network (TGN), which is the site of assembly and function of a ciliary targeting complex. This complex is comprised of two small GTPases, Arf4 and Rab11, the Rab11/Arf effector FIP3, and the Arf GTPase-activating protein ASAP1. ASAP1 mediates GTP hydrolysis on Arf4 and functions as an Arf4 effector that regulates budding of post-TGN carriers, along with FIP3 and Rab11. The Arf4 mutant I46D, impaired in ASAP1-mediated GTP hydrolysis, causes aberrant rhodopsin trafficking and cytoskeletal and morphological defects resulting in retinal degeneration in transgenic animals. As the VxPx motif is present in other ciliary membrane proteins, the Arf4-based targeting complex is most likely a part of conserved machinery involved in the selection and packaging of the cargo destined for delivery to the cilium.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Cilios/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Proteínas de Xenopus/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Cilios/ultraestructura , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Especificidad de Órganos , Unión Proteica , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Degeneración Retiniana/metabolismo , Xenopus/genética , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/ultraestructura
9.
J Neurosci ; 29(48): 15145-54, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19955366

RESUMEN

Several mutations in the N terminus of the G-protein-coupled receptor rhodopsin disrupt NXS/T consensus sequences for N-linked glycosylation (located at N2 and N15) and cause sector retinitis pigmentosa in which the inferior retina preferentially degenerates. Here we examined the role of rhodopsin glycosylation in biosynthesis, trafficking, and retinal degeneration (RD) using transgenic Xenopus laevis expressing glycosylation-defective human rhodopsin mutants. Although mutations T4K and T4N caused RD, N2S and T4V did not, demonstrating that glycosylation at N2 was not required for photoreceptor viability. In contrast, similar mutations eliminating glycosylation at N15 (N15S and T17M) caused rod death. Expression of T17M was more toxic than T4K to transgenic photoreceptors, further suggesting that glycosylation at N15 plays a more important physiological role than glycosylation at N2. Together, these results indicate that the structure of the rhodopsin N terminus must be maintained by an appropriate amino acid sequence surrounding N2 and may require a carbohydrate moiety at N15. The mutant rhodopsins were rendered less toxic in their dark inactive states, because RD was abolished or significantly reduced when transgenic tadpoles expressing T4K, T17M, and N2S/N15S were protected from light exposure. Regardless of their effect on rod viability, all of the mutants primarily localized to the outer segment and Golgi and showed little or no endoplasmic reticulum accumulation. Thus, glycosylation was not crucial for rhodopsin biosynthesis or trafficking. Interestingly, expression of similar bovine rhodopsin mutants did not cause rod cell death, possibly attributable to greater stability of bovine rhodopsin.


Asunto(s)
Luz/efectos adversos , Pliegue de Proteína , Degeneración Retiniana/metabolismo , Rodopsina/metabolismo , Aminoácidos/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Glicosilación , Proteínas Fluorescentes Verdes/genética , Humanos , Larva , Mutación/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Rodopsina/genética , Xenopus
10.
Nucleic Acids Res ; 36(20): 6523-34, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18927113

RESUMEN

X-linked juvenile retinoschisis is a heritable condition of the retina in males caused by mutations in the RS1 gene. Still, the cellular function and retina-specific expression of RS1 are poorly understood. To address the latter issue, we characterized the minimal promoter driving expression of RS1 in the retina. Binding site prediction, site-directed mutagenesis, and reporter assays suggest an essential role of two nearby cone-rod homeobox (CRX)-responsive elements (CRE) in the proximal -177/+32 RS1 promoter. Chromatin immunoprecipitation associates the RS1 promoter in vivo with CRX, the coactivators CBP, P300, GCN5 and acetylated histone H3. Transgenic Xenopus laevis expressing a green fluorescent protein (GFP) reporter under the control of RS1 promoter sequences show that the -177/+32 fragment drives GFP expression in photoreceptors and bipolar cells. Mutating either of the two conserved CRX binding sites results in strongly decreased RS1 expression. Despite the presence of sequence motifs in the promoter, NRL and NR2E3 appear not to be essential for RS1 expression. Together, our in vitro and in vivo results indicate that two CRE sites in the minimal RS1 promoter region control retinal RS1 expression and establish CRX as a key factor driving this expression.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/metabolismo , Regiones Promotoras Genéticas , Retina/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Perros , Proteínas del Ojo/biosíntesis , Histonas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Células Fotorreceptoras de Vertebrados/metabolismo , Elementos de Respuesta , Células Bipolares de la Retina/metabolismo , Activación Transcripcional , Xenopus laevis , Factores de Transcripción p300-CBP/metabolismo
11.
Adv Exp Med Biol ; 664: 509-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20238053

RESUMEN

We have recently developed transgenic X. laevis models of retinitis pigmentosa based on the rhodopsin P23H mutation in the context of rhodopsin cDNAs derived from several different species. The mutant rhodopsin in these animals is expressed at low levels, with levels of export from the endoplasmic reticulum to the outer segment that depend on the cDNA context. Retinal degeneration in these models demonstrates varying degrees of light dependence, with the highest light dependence coinciding with the highest ER export efficiency. Rescue of light dependent retinal degeneration by dark rearing is in turn dependent on the capacity of the mutant rhodopsin to bind chromophore. Our results indicate that rhodopsin chromophore can act in vivo as a pharmacological chaperone for P23H rhodopsin, and that light-dependent retinal degeneration caused by P23H rhodopsin is due to reduced chromophore binding.


Asunto(s)
Modelos Animales de Enfermedad , Luz , Degeneración Retiniana/complicaciones , Retinitis Pigmentosa/complicaciones , Xenopus laevis , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Retículo Endoplásmico/efectos de la radiación , Modelos Biológicos , Proteínas Mutantes/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/patología , Rodopsina/genética , Rodopsina/metabolismo
12.
Mol Ther Methods Clin Dev ; 17: 478-490, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32258211

RESUMEN

Aniridia is a rare eye disorder, which is caused by mutations in the paired box 6 (PAX6) gene and results in vision loss due to the lack of a long-term vision-saving therapy. One potential approach to treating aniridia is targeted CRISPR-based genome editing. To enable the Pax6 small eye (Sey) mouse model of aniridia, which carries the same mutation found in patients, for preclinical testing of CRISPR-based therapeutic approaches, we endogenously tagged the Sey allele, allowing for the differential detection of protein from each allele. We optimized a correction strategy in vitro then tested it in vivo in the germline of our new mouse to validate the causality of the Sey mutation. The genomic manipulations were analyzed by PCR, as well as by Sanger and next-generation sequencing. The mice were studied by slit lamp imaging, immunohistochemistry, and western blot analyses. We successfully achieved both in vitro and in vivo germline correction of the Sey mutation, with the former resulting in an average 34.8% ± 4.6% SD correction, and the latter in restoration of 3xFLAG-tagged PAX6 expression and normal eyes. Hence, in this study we have created a novel mouse model for aniridia, demonstrated that germline correction of the Sey mutation alone rescues the mutant phenotype, and developed an allele-distinguishing CRISPR-based strategy for aniridia.

13.
Invest Ophthalmol Vis Sci ; 60(4): 933-943, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840038

RESUMEN

Purpose: The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods: We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results: Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions: Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.


Asunto(s)
Animales Modificados Genéticamente , Retinitis Pigmentosa/fisiopatología , Rodopsina/genética , Segmento Externo de la Célula en Bastón/fisiología , Visión Ocular/fisiología , Animales , Adaptación a la Oscuridad/fisiología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Electrorretinografía , Femenino , Masculino , Microscopía Confocal , Estimulación Luminosa , Retinitis Pigmentosa/genética , Xenopus laevis
14.
Methods Mol Biol ; 1834: 193-207, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30324446

RESUMEN

Xenopus laevis have proven to be a useful system for rapid generation and analysis of transgenic models of human retinal disease. However, experimental approaches in this system were limited by lack of a robust knockdown or knockout technology. Here we describe a protocol for generation of Cas9-edited X. laevis embryos. The technique introduces point mutations into the genome of X. laevis resulting in in-frame and out-of-frame insertions and deletions that allow modeling of both dominant and recessive human diseases and efficiently generates gene knockdown and knockout. Our techniques can produce high-frequency gene editing in X. laevis, permitting analysis in the F0 generation.


Asunto(s)
Sistemas CRISPR-Cas , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Animales , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Edición Génica , Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Humanos , Ratones , Fenotipo , ARN Guía de Kinetoplastida , Degeneración Retiniana/patología , Xenopus laevis
15.
J Neurosci ; 27(34): 9043-53, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17715341

RESUMEN

To elucidate the molecular mechanisms underlying the light-sensitive retinal degeneration caused by the rhodopsin mutation P23H, which causes retinitis pigmentosa (RP) in humans, we expressed Xenopus laevis, bovine, human, and murine forms of P23H rhodopsin in transgenic X. laevis rod photoreceptors. All P23H rhodopsins caused aggressive retinal degeneration associated with low expression levels and retention of P23H rhodopsin in the endoplasmic reticulum (ER), suggesting involvement of protein misfolding and ER stress. However, light sensitivity varied dramatically between these RP models, with complete or partial rescue by dark rearing in the case of bovine and human P23H rhodopsin, and no rescue for X. laevis P23H rhodopsin. Rescue by dark rearing required an intact 11-cis-retinal chromophore binding site within the mutant protein and was associated with truncation of the P23H rhodopsin N terminus. This yielded an abundant nontoxic approximately 27 kDa form that escaped the ER and was transported to the rod outer segment. The truncated protein was produced in the greatest quantities in dark-reared retinas expressing bovine P23H rhodopsin and was not observed with X. laevis P23H rhodopsin. These results are consistent with a mechanism involving enhanced protein folding in the presence of 11-cis-retinal chromophore, with ER exit assisted by proteolytic truncation of the N terminus. This study provides a molecular mechanism for light sensitivity observed in other transgenic models of RP and for phenotypic variation among RP patients.


Asunto(s)
Oscuridad , Histidina/genética , Mutación , Prolina/genética , Retinitis Pigmentosa , Rodopsina/genética , Animales , Animales Modificados Genéticamente , Bovinos , Línea Celular Transformada , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Microscopía Electrónica de Rastreo/métodos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiopatología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Retinaldehído/farmacología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia , Transfección/métodos , Xenopus laevis
16.
J Neurosci ; 26(1): 203-9, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399688

RESUMEN

Mutations in the C terminus of rhodopsin disrupt a rod outer segment localization signal, causing rhodopsin mislocalization and aggressive forms of retinitis pigmentosa (RP). Studies of cultured photoreceptors suggest that activated mislocalized rhodopsin can cause cell death via inappropriate G-protein-coupled signaling. To determine whether this pathway occurs in vivo, we developed a transgenic Xenopus laevis model of RP based on the class I rhodopsin mutation Q344Ter (Q350Ter in X. laevis). We used a second mutation, K296R, to block the ability of rhodopsin to bind chromophore and activate transducin. We compared the effects of expression of both mutants on X. laevis retinas alone and in combination. K296R did not significantly alter the cellular distribution of rhodopsin and did not induce retinal degeneration. Q350Ter caused rhodopsin mislocalization and induced an RP-like degeneration, including loss of rods and development of sprouts or neurites in some remaining rods, but did not affect the distribution of endogenous rhodopsin. The double mutant K296R/Q350Ter caused a similar degeneration and neurite outgrowth. In addition, we found no protective effects of dark rearing in these animals. Our results demonstrate that the degenerative effects of mislocalized rhodopsin are not mediated by the activated form of rhodopsin and therefore do not proceed via conventional G-protein-coupled signaling.


Asunto(s)
Neuritas/metabolismo , Degeneración Retiniana/metabolismo , Rodopsina/fisiología , Proteínas de Xenopus/fisiología , Animales , Animales Modificados Genéticamente , Células COS , Chlorocebus aethiops , Femenino , Masculino , Neuritas/química , Mutación Puntual , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
17.
Mol Biol Cell ; 15(4): 2027-37, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14767063

RESUMEN

Protein targeting is essential for domain specialization in polarized cells. In photoreceptors, three distinct membrane domains exist in the outer segment: plasma membrane, disk lamella, and disk rim. Peripherin/retinal degeneration slow (rds) and rom-1 are photoreceptor-specific members of the transmembrane 4 superfamily of transmembrane proteins, which participate in disk morphogenesis and localize to rod outer segment (ROS) disk rims. We examined the role of their C termini in targeting by generating transgenic Xenopus laevis expressing green fluorescent protein (GFP) fusion proteins. A GFP fusion containing residues 317-336 of peripherin/rds localized uniformly to disk membranes. A longer fusion (residues 307-346) also localized to the ROS but exhibited higher affinity for disk rims than disk lamella. In contrast, the rom-1 C terminus did not promote ROS localization. The GFP-peripherin/rds fusion proteins did not immunoprecipitate with peripherin/rds or rom-1, suggesting this region does not form intermolecular interactions and is not involved in subunit assembly. Presence of GFP-peripherin/rds fusions correlated with disrupted incisures, disordered ROS tips, and membrane whorls. These abnormalities may reflect competition of the fusion proteins for other proteins that interact with peripherin/rds. This work describes novel roles for the C terminus of peripherin/rds in targeting and maintaining ROS structure and its potential involvement in inherited retinal degenerations.


Asunto(s)
Proteínas de Filamentos Intermediarios/química , Glicoproteínas de Membrana/química , Proteínas del Tejido Nervioso/química , Segmento Externo de la Célula en Bastón/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Bovinos , División Celular , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Electrónica , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Periferinas , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno , Factores de Tiempo , Transgenes , Proteínas de Xenopus , Xenopus laevis
18.
Mol Biol Cell ; 14(8): 3400-13, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12925772

RESUMEN

Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.


Asunto(s)
Proteínas de Filamentos Intermediarios/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retinitis Pigmentosa/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Animales Modificados Genéticamente , Células COS , Chlorocebus aethiops , Clonación Molecular , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Mutación , Periferinas , Subunidades de Proteína/metabolismo , Retinitis Pigmentosa/genética , Proteínas de Xenopus , Xenopus laevis
19.
Sci Rep ; 7(1): 6920, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761125

RESUMEN

The utility of Xenopus laevis, a common research subject for developmental biology, retinal physiology, cell biology, and other investigations, has been limited by lack of a robust gene knockout or knock-down technology. Here we describe manipulation of the X. laevis genome using CRISPR/Cas9 to model the human disorder retinitis pigmentosa, and to introduce point mutations or exogenous DNA sequences. We introduced and characterized in-frame and out-of-frame insertions and deletions in three genes encoding rhodopsin by co-injection of Cas9 mRNA, eGFP mRNA, and single guide RNAs into fertilized eggs. Deletions were characterized by direct sequencing and cloning; phenotypes were assessed by assays of rod opsin in retinal extracts, and confocal microscopy of cryosectioned and immunolabeled contralateral eyes. We obtained germline transmission of editing to F1 offspring. In-frame deletions frequently caused dominant retinal degeneration associated with rhodopsin biosynthesis defects, while frameshift phenotypes were consistent with knockout. We inserted eGFP or point mutations into rhodopsin genes by co-injection of repair fragments with homology to the Cas9 target sites. Our techniques can produce high frequency gene editing in X. laevis, permitting analysis in the F0 generation, and advancing the utility of X. laevis as a subject for biological research and disease modeling.


Asunto(s)
Modelos Animales de Enfermedad , Edición Génica/métodos , Retinitis Pigmentosa/genética , Rodopsina/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Femenino , Genes Dominantes , Genes Recesivos , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Fenotipo , Mutación Puntual , ARN Guía de Kinetoplastida/genética , Retinitis Pigmentosa/patología , Eliminación de Secuencia , Proteínas de Xenopus/genética , Xenopus laevis/embriología
20.
Invest Ophthalmol Vis Sci ; 47(8): 3234-41, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16877386

RESUMEN

PURPOSE: To investigate the pathogenic mechanisms that underlie retinal degeneration induced by the rhodopsin mutation P23H in a Xenopus laevis model of RP. METHODS: Transgenic X. laevis were generated that expressed the rhodopsin mutants rhoP23H and rhoP23H/K29R (a variant incapable of transducin activation). Using quantitative dot blot assay, transgenic rhodopsin levels and the extent of retinal degeneration were determined. The contribution of rhodopsin signal transduction to cell death was assessed by comparison of rhoP23H and rhoP23H/K296R effects and by dark rearing of rhoP23H tadpoles. Intracellular localization and the oligomeric state of rhoP23H were determined by confocal immunofluorescence microscopy and Western blot analysis. RESULTS: RhoP23H induced retinal degeneration in a dose-dependent manner whereas expression of a control rhodopsin did not, indicating that rod photoreceptor death was specific to the P23H mutation and was not caused by the overexpression of rhodopsin. Neither abolishment of rhoP23H photosensitivity and ability to activate transducin nor dark rearing rescued rod viability. RhoP23H was localized primarily to the endoplasmic reticulum (ER) of inner segments. Western blot analysis of transgenic retinas showed that rhoP23H was prone to form dimers and higher molecular weight oligomers. However, aggresomes were not observed in rhoP23H transgenic retinal sections, despite their being reported in cultured cells expressing rhoP23H. CONCLUSIONS: These results support a role for rhoP23H misfolding and inner segment accumulation in rod death, possibly by ER overload or other cellular stress pathways rather than by altered rhodopsin signal transduction or aggresome formation.


Asunto(s)
Modelos Animales de Enfermedad , Mutación , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Rodopsina/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Muerte Celular , Línea Celular , Adaptación a la Oscuridad , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente Indirecta , Riñón/embriología , Microscopía Confocal , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Rodopsina/metabolismo , Transducina/metabolismo , Transfección , Transgenes , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA