Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Langmuir ; 39(7): 2509-2519, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36748988

RESUMEN

With recent advances and anticipated proliferation of lipid nanoparticle (LNP)-delivered vaccines and therapeutics, there is a need for the availability of internationally recognized reference materials of LNP systems. Accordingly, we developed six LNP and liposome (anionic, neutral, and cationic each) candidate reference material formulations and thoroughly characterized by dynamic light scattering their particle hydrodynamic size (Z-avr) and polydispersity. We also evaluated the particle size homogeneity and long-term -70 °C and 4 °C storage stability using multiple large sets of randomly selected vials for each formulation. The formulations stored at -70 °C remained stable and homogeneous for a minimum of 9 months. The Z-avr relative combined uncertainty and the long-term variability were both <1.3% for liposome formulations and anionic LNPs, (3.9% and 1.7%) for neutral LNPs, and (6.7% and 4.4%) for cationic LNPs. An inadvertent few-hour-long storage temperature increase to -35 °C due to a freezer malfunction resulted in a small change of the size and size distribution of anionic liposomes and LNPs but, unexpectedly, a larger size increase of the neutral and cationic liposomes (≤5%) and LNPs (≤25%). The mean Z-avr values of the LNPs stored at 4 °C appeared to slowly increase with t1/3, where t is the storage time, and the Z-avr between-vial heterogeneity and mean polydispersity index values appeared to decrease; no change was observed for liposomes. The size and size distribution evolution of LNPs stored at 4 °C was attributed to an incomplete equilibration of the formulations following the addition of sucrose prior to the initial freezing. Such a process of size increase and size distribution narrowing has not been previously discussed nor observed in the context of LNPs.


Asunto(s)
Liposomas , Nanopartículas , Congelación , Tamaño de la Partícula , Cationes , ARN Interferente Pequeño
2.
Langmuir ; 38(25): 7858-7866, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35708310

RESUMEN

Hybrid lipid nanoparticles containing gold nanoparticles (LNP-GNPs) and drugs have potential for imaging applications as well as triggered release of LNP contents in response to pulsed laser or X-ray radiation mediated by the GNPs. However, methods to synthesize LNP-GNP systems that efficiently entrap GNPs (the potential triggered release and imaging agent) and then load and retain the drug cargo in a manner that may have clinical applications have proven elusive. Here, we develop a straightforward "bottom-up" approach to manufacture drug-loaded LNP-GNP systems. We show that negatively charged GNPs of 5 nm diameter can be stably loaded into LNPs containing 10 mol % ionizable cationic lipid using an ethanol dilution, rapid mixing approach and that these systems also exhibit aqueous compartments. Further, we show that such systems can also entrap ammonium sulfate, enabling pH-dependent loading of the weak base anti-cancer drug doxorubicin into the aqueous compartments. Cryo-transmission electron microscopy (Cryo-TEM) imaging clearly demonstrates the presence of GNPs in the interior of the resulting hybrid nanostructures as well as the formation of electron-dense drug precipitates in the aqueous core of the LNP-GNPs. The approach described here is a robust and straightforward method to generate hybrid LNP-GNP-drug and other LNP-metal nanoparticle-drug systems with potential applications for a variety of triggered release protocols.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Doxorrubicina/química , Oro/química , Liposomas/química , Nanopartículas del Metal/química , Nanopartículas/química
3.
Small ; 17(37): e2103025, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34337865

RESUMEN

Successfully employing small interfering RNA (siRNA) therapeutics requires the use of nanotechnology for efficient intracellular delivery. Lipid nanoparticles (LNPs) have enabled the approval of various nucleic acid therapeutics. A major advantage of LNPs is the interchangeability of its building blocks and RNA payload, which allow it to be a highly modular system. In addition, drug derivatization approaches can be used to synthesize lipophilic small molecule prodrugs that stably incorporate in LNPs. This provides ample opportunities to develop combination therapies by co-encapsulating multiple therapeutic agents in a single formulation. Here, it is described how the modular LNP platform is applied for combined gene silencing and chemotherapy to induce additive anticancer effects. It is shown that various lipophilic taxane prodrug derivatives and siRNA against the androgen receptor, a prostate cancer driver, can be efficiently and stably co-encapsulated in LNPs without compromising physicochemical properties or gene-silencing ability. Moreover, it is demonstrated that the combination therapy induces additive therapeutic effects in vitro. Using a double-radiolabeling approach, the pharmacokinetic properties and biodistribution of LNPs and prodrugs following systemic administration in tumor-bearing mice are quantitatively determined. These results indicate that co-encapsulating siRNA and lipophilic prodrugs into LNPs is an attractive and straightforward plug-and-play approach for combination therapy development.


Asunto(s)
Nanopartículas , Profármacos , Animales , Lípidos , Ratones , ARN Interferente Pequeño , Tecnología , Distribución Tisular
4.
Langmuir ; 37(24): 7312-7319, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34101472

RESUMEN

Lipid-based formulations have been developed to improve stability profiles, tolerability, and toxicity profiles of small molecule drugs. However, manufacture of such formulations involving lipophilic compounds can be labor-intensive and difficult to scale because of solubility and solvent compatibility issues. We have developed a rapid and scalable approach using rapid-mixing techniques to generate homogeneous lipid nanoparticle (LNP) formulations of siRNA, triglycerides, and hydrophilic weak-base drugs. Here, we used this approach to entrap a hydrophobic small molecule, Amphotericin B (AmpB), a hydrophobic drug not soluble in ethanol. The three prototypes presented in this study were derived from LNP-siRNA systems, triglyceride nanoparticles, and liposomal systems. Cryogenic transmission electron microscopy (cryo-TEM) revealed that all three LNP-AmpB formulations retain structural characteristics of the parent (AmpB-free) LNPs, with particles remaining stable for at least 1 month. All formulations showed similar in vitro toxicity profiles in comparison to AmBisome. Importantly, the formulations have a 2.5-fold improved IC50 for fungal growth inhibition as compared to AmBisome in in vitro efficacy studies. These results demonstrate that the rapid-mixing technology combined with dimethyl sulfoxide (DMSO) for drugs insoluble in other organic solvents can be a powerful manufacturing method for the generation of stable LNP drug formulations.


Asunto(s)
Anfotericina B , Nanopartículas , Anfotericina B/toxicidad , Lípidos , ARN Interferente Pequeño , Solubilidad
5.
Langmuir ; 37(3): 1120-1128, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33439022

RESUMEN

Lipid nanoparticles (LNPs) containing short-interfering RNA (LNP-siRNA systems) are a promising approach for silencing disease-causing genes in hepatocytes following intravenous administration. LNP-siRNA systems are generated by rapid mixing of lipids in ethanol with siRNA in aqueous buffer (pH 4.0) where the ionizable lipid is positively charged, followed by dialysis to remove ethanol and to raise the pH to 7.4. Ionizable cationic lipids are the critical excipient in LNP systems as they drive entrapment and intracellular delivery. A recent study on the formation of LNP-siRNA systems suggested that ionizable cationic lipids segregate from other lipid components upon charge neutralization to form an amorphous oil droplet in the core of LNPs. This leads to a decrease in intervesicle electrostatic repulsion, thereby engendering fusion of small vesicles to form final LNPs of increased size. In this study, we prepared LNP-siRNA systems containing four lipid components (hydrogenated soy phosphatidylcholine, cholesterol, PEG-lipid, and 1,2-dioleoyl-3-dimethylammonium propane) by microfluidic mixing. The effects of preparation parameters [lipid concentration, flow rate ratio (FRR), and total flow rate], dialysis process, and complex formation between siRNA and ionizable cationic lipids on the physicochemical properties [siRNA entrapment on the particle size and polydispersity index (PDI)] were investigated using a design of experiments approach. The results for the preparation parameters showed no impact on siRNA encapsulation, but lipid concentration and FRR significantly affected the particle size and PDI. In addition, the effect of FRR on the particle size was suppressed in the presence of anionic polymers such as siRNA as compared to the case of LNPs alone. More intriguingly, unlike empty LNPs, a decrease in the PDI and an increase in the particle size occurred after dialysis in the LNP-siRNA systems. Such changes by dialysis were suppressed at FRR = 1. These findings provide useful information to guide the development and manufacturing conditions for LNP-siRNA systems.

6.
Biol Pharm Bull ; 44(1): 144-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390543

RESUMEN

Liposomes containing ionizable cationic lipids have been widely used for the delivery of nucleic acids such as small-interfering RNA and mRNA. The utility of cationic lipids with a permanent positive charge, however, is limited to in vitro transfection of cultured cells due to its dose-limiting toxic side effects observed in animals. Several reports have suggested that the permanently charged cationic lipids induce reactive oxygen species (ROS) and ROS-mediated toxicity in cells. We therefore hypothesized that the concomitant use of ROS inhibitor could reduce toxicity and improve drug efficacy. In this study, suppression of the cationic toxicity was evaluated using an ROS scavenger, edaravone, which is a low-molecular-weight antioxidant drug clinically approved for acute-phase cerebral infarction and amyotrophic lateral sclerosis. Cell viability assay in the mouse macrophage-like cell line RAW264 indicated that the concomitant use of edaravone were not able to suppress the cytotoxicity induced by cationic liposomes comprised of monovalent cationic lipid N-(1-[2,3-dioleyloxy]propyl)-N,N,N-trimethylammonium chloride (DOTMA) over a short period of time. Cationic lipids-induced necrosis was assumed to be involved in the cytotoxicity upon short-term exposure to cationic liposomes. On the other hand, the significant improvement of cell viability was observed when the short treatment with cationic liposomes was followed by exposure to edaravone for 24 h. It was also confirmed that apoptosis inhibition by ROS elimination might have contributed to this effect. These results suggest the utility of continuous administration with edaravone as concomitant drug for suppression of adverse reactions in therapeutic treatment using cationic liposomes.


Asunto(s)
Apoptosis/efectos de los fármacos , Edaravona/farmacología , Depuradores de Radicales Libres/farmacología , Liposomas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/fisiología , Cationes , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Ratones , Estrés Oxidativo/fisiología , Células RAW 264.7
7.
Nature ; 489(7417): 585-9, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22940862

RESUMEN

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein-protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Quitina Sintasa/metabolismo , Detergentes , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química
8.
Mol Ther ; 24(12): 2100-2108, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27633442

RESUMEN

The therapeutic applications of lipid nanoparticle (LNP) formulations of small interfering RNA (siRNA), are hampered by inefficient delivery of encapsulated siRNA to the cytoplasm following endocytosis. Recent work has shown that up to 70% of endocytosed LNP-siRNA particles are recycled to the extracellular medium and thus cannot contribute to gene silencing. Niemann-Pick type C1 (NPC1) is a late endosomal/lysosomal membrane protein required for efficient extracellular recycling of endosomal contents. Here we assess the influence of NP3.47, a putative small molecule inhibitor of NPC1, on the gene silencing potency of LNP-siRNA systems in vitro. Intracellular uptake and colocalization studies revealed that the presence of NP3.47 caused threefold or higher increases in accumulation of LNP-siRNA in late endosomes/lysosomes as compared with controls in a variety of cell lines. The gene silencing potency of LNP siRNA was enhanced up to fourfold in the presence of NP3.47. Mechanisms of action studies are consistent with the proposal that NP3.47 acts to inhibit NPC1. Our findings suggest that the pharmacological inhibition of NPC1 is an attractive strategy to enhance the therapeutic efficacy of LNP-siRNA by trapping LNP-siRNA in late endosomes, thereby increasing opportunities for endosomal escape.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Endosomas/química , Lípidos/química , Glicoproteínas de Membrana/antagonistas & inhibidores , Nanopartículas/química , Proteínas/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Silenciador del Gen , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Células 3T3 NIH , Proteína Niemann-Pick C1 , Células RAW 264.7
9.
Nanomedicine ; 13(4): 1377-1387, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28038954

RESUMEN

Lipid nanoparticles (LNPs) containing distearoylphosphatidlycholine (DSPC), and ionizable amino-lipids such as dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA) are potent siRNA delivery vehicles in vivo. Here we explore the utility of similar LNP systems as transfection reagents for plasmid DNA (pDNA). It is shown that replacement of DSPC by unsaturated PCs and DLin-MC3-DMA by the related lipid DLin-KC2-DMA resulted in highly potent transfection reagents for HeLa cells in vitro. Further, these formulations exhibited excellent transfection properties in a variety of mammalian cell lines and transfection efficiencies approaching 90% in primary cell cultures. These transfection levels were equal or greater than achieved by Lipofectamine, with much reduced toxicity. Finally, microinjection of LNP-eGFP into the limb bud of a chick embryo resulted in robust reporter-gene expression. It is concluded that LNP systems containing ionizable amino lipids can be highly effective, non-toxic pDNA delivery systems for gene expression both in vitro and in vivo.


Asunto(s)
ADN/química , Sistemas de Liberación de Medicamentos , Lípidos/química , Nanopartículas/química , Plásmidos/química , Animales , Línea Celular Tumoral , Embrión de Pollo , Células HeLa , Humanos , Ratones , Transfección
10.
Nanomedicine ; 9(2): 233-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22698807

RESUMEN

The in vivo gene silencing potencies of lipid nanoparticle (LNP)-siRNA systems containing the ionizable cationic lipids DLinDAP, DLinDMA, DLinKDMA, or DLinKC2-DMA can differ by three orders of magnitude. In this study, we examine the uptake and intracellular processing of LNP-siRNA systems containing these cationic lipids in a macrophage cell-line in an attempt to understand the reasons for different potencies. Although uptake of LNP is not dramatically influenced by cationic lipid composition, subsequent processing events can be strongly dependent on cationic lipid species. In particular, the low potency of LNP containing DLinDAP can be attributed to hydrolysis by endogenous lipases following uptake. LNP containing DLinKC2-DMA, DLinKDMA, or DLinDMA, which lack ester linkages, are not vulnerable to lipase digestion and facilitate much more potent gene silencing. The superior potency of DLinKC2-DMA compared with DLinKDMA or DLinDMA can be attributed to higher uptake and improved ability to stimulate siRNA release from endosomes subsequent to uptake. FROM THE CLINICAL EDITOR: This study reports on the in vivo gene silencing potency of lipid nanoparticle-siRNA systems containing ionizable cationic lipids. It is concluded that the superior potency of DLinKC2-DMA compared with DLinKDMA or DLinDMA can be attributed to their higher uptake thus improved ability to stimulate siRNA release from endosome.


Asunto(s)
Lípidos/química , Macrófagos/metabolismo , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Animales , Cationes/química , Cationes/metabolismo , Línea Celular , Clatrina/metabolismo , Endocitosis , Lipasa/metabolismo , Metabolismo de los Lípidos , Ratones , Pinocitosis , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacocinética , Ribonucleasas/metabolismo
11.
Nanomedicine ; 9(5): 665-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23219877

RESUMEN

Gene silencing activity of lipid nanoparticle (LNP) formulations of siRNA requires LNP surface factors promoting cellular uptake. This study aimed to identify small molecules that enhance cellular uptake of LNP siRNA systems, then use them as LNP-associated ligands to improve gene silencing potency. Screening the Canadian Chemical Biology Network molecules for effects on LNP uptake into HeLa cells found that cardiac glycosides like ouabain and strophanthidin caused the highest uptake. Cardiac glycosides stimulate endocytosis on binding to plasma membrane Na(+)/K(+) ATPase found in all mammalian cells, offering the potential to stimulate LNP uptake into various cell types. A PEG-lipid containing strophanthidin at the end of PEG (STR-PEG-lipid) was synthesized and incorporated into LNP. Compared to non-liganded systems, STR-PEG-lipid enhanced LNP uptake in various cell types. Furthermore, this enhanced uptake improved marker gene silencing in vitro. Addition of STR-PEG-lipid to LNP siRNA may have general utility for enhancing gene silencing potency. FROM THE CLINICAL EDITOR: In this study, the authors identified small molecules that enhance cellular uptake of lipid nanoparticle siRNA systems, then used them as LNP-associated ligands to improve gene silencing potency.


Asunto(s)
Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/genética , Estrofantidina/administración & dosificación , Animales , Endocitosis/genética , Silenciador del Gen/efectos de los fármacos , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Ligandos , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/química , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrofantidina/química
12.
Int J Cancer ; 131(5): E781-90, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22095615

RESUMEN

The androgen receptor (AR) plays a critical role in the progression of prostate cancer. Silencing this protein using short-hairpin RNA (shRNA) has been correlated with tumor growth inhibition and decreases in serum prostate specific antigen (PSA). In our study, we have investigated the ability of lipid nanoparticle (LNP) formulations of small-interfering RNA (siRNA) to silence AR in human prostate tumor cell lines in vitro and in LNCaP xenograft tumors following intravenous (i.v.) injection. In vitro screening studies using a panel of cationic lipids showed that LNPs containing the ionizable cationic lipid 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA) exhibited the most potent AR silencing effects in LNCaP cells. This is attributed to an optimized ability of DLin-KC2-DMA-containing LNP to be taken up into cells and to release the siRNA into the cell cytoplasm following endocytotic uptake. DLin-KC2-DMA LNPs were also effective in silencing the AR in a wild-type AR expressing cell line, LAPC-4, and a variant AR expressing cell line, CWR22Rv1. Importantly, it is demonstrated that LNP AR-siRNA systems containing DLin-KC2-DMA can silence AR gene expression in distal LNCaP xenograft tumors and decrease serum PSA levels following i.v. injection. To our knowledge, this is the first report demonstrating the feasibility of LNP delivery of siRNA for silencing AR gene expression in vivo.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Lípidos , Nanopartículas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , ARN Interferente Pequeño/genética , Receptores Androgénicos/química , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Ther ; 19(12): 2186-200, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971424

RESUMEN

Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Cationes/química , Silenciador del Gen , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Western Blotting , Médula Ósea , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Endocitosis , Citometría de Flujo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Liposomas , Hígado/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/genética
14.
Sci Rep ; 12(1): 18071, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302886

RESUMEN

Lipid based nanocarriers are one of the most effective drug delivery systems that is evident from the recent COVID-19 mRNA vaccines. The main objective of this study was to evaluate toxicity of six lipid based formulations with three surface charges-anionic, neutral or cationic, to establish certified reference materials (CRMs) for liposomes and siRNA loaded lipid nanoparticles (LNP-siRNA). Cytotoxicity was assessed by a proliferation assay in adherent and non-adherent cell lines. High concentration of three LNP-siRNAs did not affect viability of suspension cells and LNP-siRNAs were non-toxic to adherent cells at conventionally used concentration. Systematic evaluation using multiple vials and repeated test runs of three liposomes and three LNP-siRNA formulations showed no toxicity in HL60 and A549 cells up to 128 and 16 µg/mL, respectively. Extended treatment and low concentration of LNPs did not affect the viability of suspension cells and adherent cells at 96 h. Interestingly, 80% of A549 and HL60 cells in 3D conditions were viable when treated with cationic LNP-siRNA for 48 h. Taken together, anionic, cationic and neutral lipid formulations were non-toxic to cells and may be explored further in order to develop them as drug carriers.


Asunto(s)
Antineoplásicos , COVID-19 , Nanopartículas , Humanos , Liposomas , ARN Interferente Pequeño/genética , Lípidos/toxicidad , Cationes
15.
J Control Release ; 349: 174-183, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35780952

RESUMEN

Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active. Here we explore the use of RNA interference (RNAi) to target a universally conserved region of all AR splice variants for cleavage and degradation, thereby eliminating protein level resistance mechanisms. To this end, we tested five siRNA sequences designed against exon 1 of the AR mRNA and identified several that induced potent knockdown of full-length and truncated variant ARs in the 22Rv1 human prostate cancer cell line. We then demonstrated that 2'O methyl modification of the top candidate siRNA (siARvm) enhanced AR and AR-V7 mRNA silencing potency in both 22Rv1 and LNCaP cells, which represent two different prostate cancer models. For downstream in vivo delivery, we formulated siARvm-LNPs and functionally validated these in vitro by demonstrating knockdown of AR and AR-V7 mRNA in prostate cancer cells and loss of AR-mediated transcriptional activation of the PSA gene in both cell lines following treatment. We also observed that siARvm-LNP induced cell viability inhibition was more potent compared to LNP containing siRNA targeting full-length AR mRNA (siARfl-LNP) in 22Rv1 cells as their proliferation is more dependent on AR splice variants than LNCaP and PC3 cells. The in vivo biodistribution of siARvm-LNPs was determined in 22Rv1 tumor-bearing mice by incorporating 14C-radiolabelled DSPC in LNP formulation, and we observed a 4.4% ID/g tumor accumulation following intravenous administration. Finally, treatment of 22Rv1 tumor bearing mice with siARvm-LNP resulted in significant tumor growth inhibition and survival benefit compared to siARfl-LNP or the siLUC-LNP control. To best of our knowledge, this is the first report demonstrating therapeutic effects of LNP-siRNA targeting AR splice variants in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Antagonistas de Andrógenos , Andrógenos , Animales , Línea Celular Tumoral , Humanos , Ligandos , Liposomas , Masculino , Ratones , Nanopartículas , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Distribución Tisular
16.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551622

RESUMEN

Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.

17.
J Cell Biol ; 169(5): 765-75, 2005 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-15928207

RESUMEN

Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.


Asunto(s)
División Celular/fisiología , Herencia Extracromosómica/fisiología , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/genética , Peroxinas , Peroxisomas/genética , Peroxisomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
18.
Nanoscale ; 12(47): 23959-23966, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33241838

RESUMEN

Lipid nanoparticle (LNP) formulations of nucleic acid are leading vaccine candidates for COVID-19, and enabled the first approved RNAi therapeutic, Onpattro. LNPs are composed of ionizable cationic lipids, phosphatidylcholine, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced using rapid-mixing techniques. These procedures involve dissolution of the lipid components in an organic phase and the nucleic acid in an acidic aqueous buffer (pH 4). These solutions are then combined using a continuous mixing device such as a T-mixer or microfluidic device. In this mixing step, particle formation and nucleic acid entrapment occur. Previous work from our group has shown that, in the absence of nucleic acid, the particles formed at pH 4 are vesicular in structure, a portion of these particles are converted to electron-dense structures in the presence of nucleic acid, and the proportion of electron-dense structures increases with nucleic acid content. What remained unclear from previous work was the mechanism by which vesicles form electron-dense structures. In this study, we use cryogenic transmission electron microscopy and dynamic light scattering to show that efficient siRNA entrapment occurs in the absence of ethanol (contrary to the established paradigm), and suggest that nucleic acid entrapment occurs through inversion of preformed vesicles. We also leverage this phenomenon to show that specialized mixers are not required for siRNA entrapment, and that preformed particles at pH 4 can be used for in vitro transfection.


Asunto(s)
COVID-19 , Dispositivos Laboratorio en un Chip , Lípidos , Nanopartículas , ARN Interferente Pequeño , SARS-CoV-2 , Animales , Línea Celular , Concentración de Iones de Hidrógeno , Lípidos/química , Lípidos/farmacología , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología
19.
Bioconjug Chem ; 20(7): 1404-11, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19534457

RESUMEN

The use of targeting ligands to enhance the delivery of liposomal nanoparticles (LNs) has moved slowly toward clinical application. This relative lack of clinical progression is further complicated by the existence of conflicting in vivo results in the literature. In this work, we describe new formulations of LNs that are targeted with an arginine-glycine-aspartic acid-containing peptide, cRGDfK, conjugated to the lipid distearoyl phosphatidylethanolamine (DSPE). These formulations may be able to circumvent some of the challenges encountered during the development of targeted-LNs. Of the constructs studied, a fluorescently labeled peptide-lipid conjugate was incorporated into LNs with high yield and accuracy. It is shown that the resulting targeted-LNs bind to human umbilical vein endothelial cells (HUVECs) with increasing avidity as the amount of peptide displayed on the LN surface increases. We specifically demonstrate the ability of targeted-LNs loaded with doxorubicin and incubated with HUVECs to deliver the drug to the cytosol. The cell does not internalize nontargeted LNs, supporting the notion that the RGD motif is associated with internalization of the targeted LN.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Células Endoteliales/citología , Liposomas/química , Péptidos Cíclicos/química , Fosfatidiletanolaminas/química , Antibióticos Antineoplásicos/farmacocinética , Permeabilidad de la Membrana Celular , Células Cultivadas , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Humanos , Liposomas/metabolismo , Liposomas/farmacocinética , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacocinética
20.
J Cell Biol ; 161(2): 321-32, 2003 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-12707309

RESUMEN

The peroxin Pex24p of the yeast Yarrowia lipolytica exhibits high sequence similarity to two hypothetical proteins, Yhr150p and Ydr479p, encoded by the Saccharomyces cerevisiae genome. Like YlPex24p, both Yhr150p and Ydr479p have been shown to be integral to the peroxisomal membrane, but unlike YlPex24p, their levels of synthesis are not increased upon a shift of cells from glucose- to oleic acid-containing medium. Peroxisomes of cells deleted for either or both of the YHR150w and YDR479c genes are increased in number, exhibit extensive clustering, are smaller in area than peroxisomes of wild-type cells, and often exhibit membrane thickening between adjacent peroxisomes in a cluster. Peroxisomes isolated from cells deleted for both genes have a decreased buoyant density compared with peroxisomes isolated from wild-type cells and still exhibit clustering and peroxisomal membrane thickening. Overexpression of the genes PEX25 or VPS1, but not the gene PEX11, restored the wild-type phenotype to cells deleted for one or both of the YHR150w and YDR479c genes. Together, our data suggest a role for Yhr150p and Ydr479p, together with Pex25p and Vps1p, in regulating peroxisome number, size, and distribution in S. cerevisiae. Because of their role in peroxisome dynamics, YHR150w and YDR479c have been designated as PEX28 and PEX29, respectively, and their encoded peroxins as Pex28p and Pex29p.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Proteínas de la Membrana/aislamiento & purificación , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Células Cultivadas , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación/efectos de los fármacos , Mutación/genética , Ácido Oléico/farmacología , Peroxisomas/genética , Peroxisomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA