Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Fish Shellfish Immunol ; 141: 109052, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678481

RESUMEN

MicroRNAs (miRNAs) are a group of RNAs that regulate gene expression in the post-transcriptionally. miRNAs can regulate numerous processes, such as the immune response, due to their dynamic expression patterns. The giant freshwater prawn Macrobrachium rosenbergii is a major freshwater aquaculture prawn that is attacked by various bacteria, including Aeromonas hydrophila. For this study, we performed an analysis of the miRNA and mRNA transcriptome analysis of M. rosenbergii which was infected with A. hydrophila. We identified 56 differentially expressed miRNAs (DEMs) and 1542 differentially expressed mRNAs. Furthermore, an integrated analysis of miRNA-mRNA expression led to the identification of 729 differentially predicted target genes (DETGs) of the DEMs. Multiple functional categories related to immunity, apoptosis, and autophagy were found to be enriched in the DETGs. During the infection of M. rosenbergii by A. hydrophila, an elaborate regulatory network involving Toll and immune deficiency (IMD) signaling, mitogen-activated protein kinase (MAPK) signaling, lysosome, and cell apoptosis was formed by a complex interplay of 40 crucial DEMs and 22 DETGs, all associated with the immune and autophagy pathway. The findings suggest that infection with A. hydrophila triggers intricate responses in both miRNA and mRNA, significantly impacting immune and autophagy processes in M. rosenbergii.


Asunto(s)
MicroARNs , Palaemonidae , Animales , Aeromonas hydrophila/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica/veterinaria , MicroARNs/genética , MicroARNs/metabolismo
2.
Fish Shellfish Immunol ; 123: 207-217, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35278639

RESUMEN

Interleukin-21 (IL-21), a crucial immune regulatory molecule, belongs to the common γ-chain family of type I cytokines, and exerts pleiotropic effects on multiple immune cell types in mammals. However, the characteristics and functions of fish IL-21 remain unclear. To further investigate the molecular mechanism of IL-21 in teleosts, we first cloned and identified the IL-21 gene (designated shIL-21) of the snakehead (Channa argus). The full-length open reading frame of shIL-21 is 438 bp in length, and encodes a predicted protein of 145 amino acid residues. A sequence analysis showed that shIL-21 has the typical structural characteristics of other IL-21 proteins, containing four α-helices and four conserved cysteine residues. In a phylogenetic analysis, shIL-21 clustered within a subgroup of IL-21 proteins from other teleost species and shared its closest evolutionary relationship with that of Lates calcarifer. The expression analysis showed that shIL-21 was ubiquitously expressed in all the healthy snakehead tissues tested, albeit at different levels. After infection with Nocardia seriolae or Aeromonas schubertii, the relative expression of shIL-21 was mainly upregulated in the head kidney and spleen in vivo. Similarly, after stimulation with the three pathogen analogues lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid, the expression of shIL-21 was also induced in head kidney leukocytes in vitro. A recombinant shIL-21 protein was expressed and purified, and promoted the proliferation of head kidney leukocytes, induced the expression of genes encoding critical signaling molecules in the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway, including JAK1, JAK3, STAT1, and STAT3, and induced the expression of endogenous shIL-21 and genes encoding several key proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and IL-1ß). Taken together, these preliminary findings suggest that shIL-21 is involved in the immune defense against bacterial infection, in leukocyte proliferation, and in the activation of the JAK-STAT pathway. They thus extend the functional studies of IL-21 in teleosts.


Asunto(s)
Enfermedades de los Peces , Quinasas Janus , Animales , Proliferación Celular , Peces/genética , Interleucinas/genética , Interleucinas/metabolismo , Quinasas Janus/genética , Leucocitos/metabolismo , Mamíferos/metabolismo , Filogenia , Factores de Transcripción STAT/genética , Transducción de Señal
3.
Fish Shellfish Immunol ; 127: 623-632, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810964

RESUMEN

As an inflammatory cytokine of the interleukin-20 (IL-20) subfamily, IL-20 has various functions in immune defenses, inflammatory diseases, tissue regeneration, cancer, and metabolism. Although the characteristics and functions of mammalian IL-20 have been clarified, those of fish IL-20 remain unclear. In this study, the IL-20 gene from the snakehead Channa argus (shIL-20) was cloned and functionally characterized. Similar to the IL-20 homologues of other species, the shIL-20 has a five exon/four intron structure in the coding region. The open reading frame of shIL-20 consists of 528 base pairs and encodes 175 amino acids (aa), including a signal peptide (aa 1-24) and a mature peptide (aa 25-175). The mature shIL-20 protein has six conserved cysteine residues, which occur in the IL-20 proteins of all species analyzed, and an additional cysteine residue (Cys-82) found only in the IL-20 proteins of several teleosts. The modeled tertiary structure of shIL-20 is similar with that of Homo sapiens IL-20. The shIL-20 was expressed constitutively in all the tissues analyzed, and its transcription was induced in the spleen and head kidney by Aeromonas schubertii and Nocardia seriolae in vivo and in head kidney leukocytes (HKLs) by lipoteichoic acid, lipopolysaccharide, and polyinosinic-polycytidylic acid in vitro. The recombinant shIL-20 protein induced the transcription of tumor necrosis factor α1 (TNF-α1), TNF-α2, IL-1ß, and endogenous shIL-20, and promoted the proliferation of HKLs. In conclusion, these findings demonstrate that shIL-20 participates in the immune response to bacterial invasion and promotes leukocyte proliferation, offering new insights into the functions of fish IL-20 during pathogen invasion.


Asunto(s)
Cisteína , Enfermedades de los Peces , Animales , Bacterias/metabolismo , Proliferación Celular , Proteínas de Peces/química , Peces/genética , Riñón Cefálico/metabolismo , Interleucinas , Leucocitos/metabolismo , Mamíferos/metabolismo , Filogenia
4.
Fish Shellfish Immunol ; 104: 470-477, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32585357

RESUMEN

Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces/genética , Peces/inmunología , Inmunidad Innata/genética , Receptores del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Aeromonas/fisiología , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Riñón Cefálico/inmunología , Leucocitos/inmunología , Lipopolisacáridos/farmacología , Nocardia/fisiología , Nocardiosis/inmunología , Nocardiosis/veterinaria , Poli I-C/farmacología , Receptores del Factor de Necrosis Tumoral/inmunología , Bazo/inmunología , Ácidos Teicoicos/farmacología , Factor de Necrosis Tumoral alfa/inmunología
5.
Fish Shellfish Immunol ; 100: 309-316, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32173451

RESUMEN

As a central pro-inflammatory cytokine, interleukin-1ß (IL-1ß) plays critical roles in the inflammatory response, pathogen infection, and immunological challenges in mammals. Although fish IL-1ß has been confirmed to participate in inflammatory response to pathogen infection, few studies have been performed to characterize the antibacterial and bactericidal functions of fish IL-1ß. In this study, snakehead (Channa argus) IL-1ß (shIL-1ß) and its receptors, shIL-1R1 and shIL-1R2, were cloned and functionally characterized. ShIL-1ß contained the IL-1 family signature domain, and a potential cutting site at Asp96 that presented in all vertebrate IL-1ß sequences. ShIL-1R1 had three extracellular IG-like domains and one intracellular signal TIR domain, while shIL-1R2 had three extracellular IG-like domain but lacked the intracellular signal TIR domain. ShIL-1ß, shIL-1R1, and shIL-1R2 were constitutively expressed in all tested tissues, and their expressions could be induced by Aeromonas schubertii and Nocardia seriolae in the head kidney and spleen in vivo, and by LTA, LPS, and Poly (I:C) in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shIL-1ß upregulated the expression of endogenous shIL-1ß, shIL-R1, and shIL-R2 in snakehead HKLs, and enhanced intracellular bactericidal activity. Taken together, this study found that, like IL-1ß and its receptors in mammals, shIL-1ß and its receptors play crucial roles in antibacterial innate immunity. This provides new insight into the evolution of IL-1ß function in vertebrates.


Asunto(s)
Bacterias/inmunología , Infecciones Bacterianas/veterinaria , Carpas/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata , Interleucina-1beta/genética , Receptores de Interleucina-1/genética , Animales , Antibacterianos , Infecciones Bacterianas/inmunología , Carpas/genética , Carpas/microbiología , Clonación Molecular , Enfermedades de los Peces/microbiología , Riñón Cefálico/inmunología , Interleucina-1beta/inmunología , Receptores de Interleucina-1/inmunología
6.
J Fish Dis ; 43(2): 239-252, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31820468

RESUMEN

Pure bacterial cultures were isolated from different tissues of moribund Megalobrama terminalis from a high mortality event that occurred at a farm in Foshan, China. Two isolates (F2 and F3) were identified as Streptococcus dysgalactiae subsp. dysgalactiae based on morphological and biochemical detection as well as molecular analysis. In brain heart infusion broth, the best growth conditions of isolate F3 were 35ºC, salinity 5‰ and pH 7. Furthermore, infection with isolate F3 (1.2 × 106  CFU/fish) led to the death of M. terminalis and zebrafish (Danio rerio). However, isolate F3 had no obvious pathogenicity to tilapia (GIFT, Oreochromis niloticus). When the water temperature was 29ºC, the corresponding mortality rates for zebrafish infected by isolate F3 were higher than those at 23ºC. Culture for 24 and 72 hr with isolate F3 resulted in the same mortality rates for zebrafish. The antimicrobial susceptibility assay revealed that isolate F3 was susceptible to ampicillin, florfenicol and several other antibiotics but resistant to nalidixic acid, streptomycin, sulfamethoxazole/trimethoprim, neomycin and amikacin. To our knowledge, this is the first report that S. dysgalactiae infected the subtropical freshwater fish M. terminalis, which indicates that this bacterium is a potential threat to subtropical freshwater fish.


Asunto(s)
Cyprinidae , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus/fisiología , Streptococcus/patogenicidad , Animales , Antibacterianos/farmacología , China , Cíclidos , Farmacorresistencia Bacteriana , Filogenia , Infecciones Estreptocócicas/microbiología , Streptococcus/clasificación , Streptococcus/efectos de los fármacos , Pez Cebra
7.
Sensors (Basel) ; 19(15)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390844

RESUMEN

People's demand for high-traffic applications and the need for Internet of Things (IoT) are enormous in smart cities. The amount of data generated by virtual reality, high-definition video, and other IoT applications is growing at an exponential rate that far exceeds our expectations, and the types of data are becoming more diverse. It has become critical to reliably accommodate IoT-based big data with reasonable resource allocation in optical backbone networks for smart cities. For the problem of reliable transmission and efficient resource allocation in optical backbone networks, a novel resource allocation and spectrum defragmentation mechanism for massive IoT traffic is presented in this paper. Firstly, a routing and spectrum allocation algorithm based on the distance-adaptive sharing protection mechanism (DASP) is proposed, to obtain sufficient protection and reduce the spectrum consumption. The DASP algorithm advocates applying different strategies to the resource allocation of the working and protection paths. Then, the protection path spectrum defragmentation algorithm based on OpenFlow is designed to improve spectrum utilization while providing shared protection for traffic demands. The lowest starting slot-index first (LSSF) algorithm is employed to remove and reconstruct the optical paths. Numerical results indicate that the proposal can effectively alleviate spectrum fragmentation and reduce the bandwidth-blocking probability by 44.68% compared with the traditional scheme.

8.
Sensors (Basel) ; 19(3)2019 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691088

RESUMEN

The Industrial Internet of Things (IIoT) has a wide range of applications, such as intelligent manufacturing, production process optimization, production equipment monitoring, etc. Due to the complex circumstance in underground mining, the performance of WSNs faces enormous challenges, such as data transmission delay, packet loss rate, and so on. The MAC (Media Access Control) protocol based on TDMA (Time Division Multiple Access) is an effective solution, but it needs to ensure the clock synchronization between the transmission nodes. As the key technology of IIoT, synchronization needs to consider the factors of tunnel structure, energy consumption, etc. Traditional synchronization methods, such as TPSN (Timing-sync Protocol for Sensor Networks), RBS (Reference Broadcast Synchronization), mainly focus on improving synchronization accuracy, ignoring the impact of the actual environment, cannot be directly applied to the IIoT in underground mining. In underground mining, there are two kinds of nodes: base-station node and sensor node, which have different topologies, so they constitute a hybrid topology. In this paper, according to hybrid topology of unground mining, a clock synchronization scheme based on a dynamic superframe is designed. In this scheme, the base-station and sensor have different synchronization methods, improving the TPSN and RBS algorithm, respectively, and adjusts the period of the superframe dynamically by estimating the clock offset. The synchronization scheme presented in this paper can reduce the network communication overhead and energy consumption, ensuring the synchronization accuracy. Based on theCC2530 (Asystem-on-chip solution for IEEE 802.15.4, Zigbee and RF4CE applications), the experiments are compared and analyzed, including synchronization accuracy, energy consumption, and robustness tests. Experimental results show that the synchronization accuracy of the proposed method is at least 11% higher than that of the existing methods, and the energy consumption can be reduced by approximately 13%. At the same time, the proposed method has better robustness.

9.
Microorganisms ; 12(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543623

RESUMEN

Pathogenic Aeromonas spp. are the etiological agents of Motile Aeromonas Septicemia (MAS). This study aimed to identify the pathogen of diseased tadpoles (Quasipaa spinosa) and the antibiotic-resistance characteristics of this bacterium. A Gram-negative bacterium, named strain QST31, was isolated from the ascites of diseased tadpoles and was identified as Aeromonas media based on physiological and biochemical tests, as well as molecular identification. Artificial infection experiments showed that strain QST31 was highly virulent to tadpoles, with an LC50 of 2.56 × 107 CFU/mL. The antimicrobial susceptibility of strain QST31 was evaluated using the disk diffusion method, and the results indicated that strain QST31 was resistant to 28 antibacterial agents. In addition, the whole genome of strain QST31 was sequenced, and the presence of antimicrobial resistance genes, integron, and transposon was investigated. Genes involved in adherence, hemolysis, type II secretion system (T2SS), T6SS, iron uptake system, and quorum sensing were identified in the genome of strain QST31. More than 12 antimicrobial resistance genes were predicted in the genome of strain QST31. Interestingly, a novel Tn7709 transposon harboring sul1, aadA16, catB3, blaOXA-21, aac(6')-IIa, and tet(A) genes was identified. In conclusion, this is the first report on the isolation and identification of pathogenic A. media with multidrug resistance genes from diseased tadpoles. The results revealed that preventing and controlling aquatic animal diseases caused by multidrug resistance A. media will be a huge challenge in the future.

10.
Int J Biol Macromol ; 258(Pt 2): 129084, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161029

RESUMEN

MicroRNA (miRNA) is a highly conserved non-coding tiny endogenous RNA molecule that regulates various cellular functions by inhibiting mRNA translation or promoting the degradation of proteins. In this study, we identified a specific miRNA (designed as Pva-miR-2765) from Penaeus vannamei, which widely distributed in different tissues of shrimp, with the highest concentration found in the intestine. Through fluorescence in situ hybridization (FISH), we observed that Pva-miR-2765 is primarily located in the cytoplasm. Interestingly, we found that the expression of Pva-miR-2765 significantly decreased in hemocytes, hepatopancreas and gill under ammonia nitrogen stress. Furthermore, when Pva-miR-2765 was silenced, the autophagy level in shrimp significantly increased. Additionally, Pva-miR-2765 was found to promote pathological damage in the hepatopancreas of shrimp. Subsequently, correlation analysis revealed a negative relationship between the expression of Pva-miR-2765 and PvTBC1D7. To confirm this interaction, we conducted a dual luciferase reporter gene assay, which demonstrated that Pva-miR-2765 inhibit the expression of PvTBC1D7 by interacting with its 3'UTR. And the expression level of PvTBC1D7 in shrimp decreased significantly under ammonia nitrogen stress in Pva-miR-2765 overexpressed. Our findings suggest that Pva-miR-2765 can reduce autophagy in P. vannamei by inhibiting the regulation of PvTBC1D7, thereby participating in the oxidative stress of shrimp caused by ammonia nitrogen stress.


Asunto(s)
MicroARNs , Penaeidae , Animales , Amoníaco , Hibridación Fluorescente in Situ , Nitrógeno , Autofagia
11.
Front Cell Infect Microbiol ; 13: 1138422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926518

RESUMEN

Nocardia seriolae, an intracellular gram-positive pathogen, is prone to infecting immunocompromised and surface-damaged fish, causing serious losses to the aquaculture industry. Although a previous study has demonstrated that N. seriolae infects macrophages, the persistence of this bacterium in macrophages has not been well characterized. To address this gap, we used the macrophage cell line RAW264.7, to investigate the interactions between N. seriolae and macrophages and deciphered the intracellular survival mechanism of N. seriolae. Confocal and light microscopy revealed that N. seriolae entered macrophages 2 hours post-inoculation (hpi), were phagocytosed by macrophages at 4-8 hpi, and induced the formation of multinucleated macrophages by severe fusion at 12 hpi. Flow cytometry, evaluation of mitochondrial membrane potential, release of lactate dehydrogenase, and observation of the ultrastructure of macrophages revealed that apoptosis was induced in the early infection stage and inhibited in the middle and later periods of infection. Additionally, the expression of Bcl-2, Bax, Cyto-C, Caspase-3, Capase-8, and Caspase-9 was induced at 4 hpi, and then decreased at 6-8 hpi, illustrating that N. seriolae infection induces the activation of extrinsic and intrinsic apoptotic pathways in macrophages, followed by the inhibition of apoptosis to survive inside the cells. Furthermore, N. seriolae inhibits the production of reactive oxygen species and releases large amounts of nitric oxide, which persists in macrophages during infection. The present study provides the first comprehensive insight into the intracellular behavior of N. seriolae and its apoptotic effect on macrophages and may be important for understanding the pathogenicity of fish nocardiosis.


Asunto(s)
Enfermedades de los Peces , Nocardiosis , Nocardia , Animales , Nocardiosis/microbiología , Peces , Macrófagos , Enfermedades de los Peces/microbiología
12.
JAMA Netw Open ; 6(12): e2347886, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117498

RESUMEN

Importance: Propofol sedation is widely used for endoscopic procedures, but it poses risks of hemodynamic and respiratory depression. The addition of esketamine as an adjuvant may reduce propofol requirements and associated adverse events. Objective: To evaluate the effects of low-dose esketamine added to propofol-based sedation on desaturation and hypotension during same-visit bidirectional endoscopy. Design, Setting, and Participants: This multicenter, double-blind, placebo-controlled randomized clinical trial assessed patients from 3 teaching hospitals in China who were scheduled for same-visit bidirectional endoscopy between February 8 and November 30, 2022, and randomly assigned to receive esketamine or normal saline (placebo). Interventions: After induction of sedation with 0.1 µg/kg of sufentanil and 0.5 mg/kg of propofol, patients in the esketamine group received 0.15 mg/kg of intravenous esketamine, whereas patients in the placebo group received an equivalent volume of saline. Sedation was achieved through propofol titration. Main Outcomes and Measures: The primary outcome was the composite of desaturation and hypotension during the procedures. Secondary outcomes included desaturation, hypotension, propofol requirements, postprocedure pain and fatigue, nausea or vomiting, dizziness or headache, hallucination or nightmare, endoscopist satisfaction, and patient satisfaction. Results: Among the 663 initially enrolled patients, 660 completed the study (median [IQR] age, 48 [36-57] years; 355 [53.8%] female), with 331 randomized to the esketamine group and 329 to the placebo group. The administration of esketamine compared with placebo significantly reduced the incidence of the composite outcome of desaturation and hypotension (8.2% vs 21.0%; difference, -12.8 percentage points; odds ratio [OR], 0.34; 95% CI, 0.21-0.54; P < .001). Additionally, esketamine led to significantly lower incidences of desaturation (OR, 0.36; 95% CI, 0.18-0.72; false discovery rate q = .01) and hypotension (OR, 0.33; 95% CI, 0.18-0.60; q < .001) and reduced propofol requirements (difference, -58.9 mg; 95% CI, -65.7 to -52.2 mg; q < .001), without significant effects on other secondary outcomes. Conclusions and Relevance: In this randomized clinical trial of patients undergoing same-visit bidirectional endoscopy, the administration of low-dose esketamine resulted in an approximately 61% reduction in the incidence of desaturation and hypotension, accompanied by decreased propofol requirements. These findings support the use of esketamine as an adjuvant to propofol-based sedation in endoscopic procedures. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2200055938.


Asunto(s)
Hipotensión , Ketamina , Propofol , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adyuvantes Inmunológicos , Endoscopía Gastrointestinal , Hipotensión/epidemiología , Hipotensión/prevención & control , Ketamina/uso terapéutico , Propofol/efectos adversos , Adulto
13.
Zhongguo Zhong Yao Za Zhi ; 37(4): 524-8, 2012 Feb.
Artículo en Zh | MEDLINE | ID: mdl-22667157

RESUMEN

OBJECTIVE: To study major human UGT isoforms involved in trans-resveratrol (TR) phase II metabolism. METHOD: trans-resveratrol and 12 major human UGT isoforms were incubated in vitro and then glucuronic acid metabolites were determined by HPLC-MS, in order to preliminarily analyze the structure and observe the effect of different UGT isoforms on the generation rate of glucuronic acid metabolites. RESULT: In in vitro metabolic system, two metabolites-4'-O-monoglucuronide resveratrol (M-1) and 3-0-monoglucuronide resveratrol (M-2)-were generated from trans-resveratrol after being catalyzed by UGT. During the cause, generation of M-1 and M-2 were catalyzed by UGT1A1, UGT1A3, 1A8, 1A9 andlA10, whereas only UGT1A6 and 1A7 contributed to the forma-tion of M-2. Both the formation rate of M-1 and M-2 catalyzed by UGT1A1, 1A10 and the formation of M-2 catalyzed by UGT1A8 slowed down with the increasing concentration of substrates, causing the phenomenon of "substrate inhibition". CONCLUSION: UGT1A1, 1A8, 1A9, 1A10 get involved in the formation of M-1, and of them UGTIA9 is the most important contributor. UGT1A3 also makes small contribution to the formation of M-1 and M-2, while other UGT isoforms show hardly any reaction with the trans-resveratrol phase II metabolites.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Ácido Glucurónico/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Resveratrol
14.
Int J Gen Med ; 15: 4733-4740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571286

RESUMEN

Background: Same-visit bidirectional endoscopy (esophagogastroduodenoscopy and colonoscopy) is widely performed under sedation. At present, the optimal sedation regimen remains unclear. This study aims to test the hypothesis that a low-dose esketamine added to propofol sedation reduces hemodynamic and respiratory adverse events in these procedures. Methods: In this multicenter, randomized, double-blind, placebo-controlled trial, 660 adult patients scheduled for same-visit bidirectional endoscopy under sedation from 3 teaching hospitals in China will be recruited. Patients will be randomly allocated, in a 1:1 ratio, to an esketamine group or a normal saline group (n = 330 in each group), stratified by study center. All patients will receive intravenous propofol 0.5 mg/kg and sufentanil 0.1 µg/mL for induction of sedation, followed by intravenous esketamine 0.15 mg/kg or the same volume of normal saline. Propofol will be titrated to the target sedation levels during the procedures. The primary endpoint is a composite of desaturation (peripheral oxygen saturation < 90%) and hypotension (systolic blood pressure <80 mmHg or decrease >30% of baseline). Secondary endpoints include desaturation, hypotension, total dose of propofol, pain scores and fatigue scores on the 0-10 numerical rating scale, dizziness or headache, hallucination or nightmare, nausea or vomiting, endoscopist satisfaction, and patient satisfaction. All analyses will be intention-to-treat. Discussion: We expect that a low-dose esketamine adjunct to propofol-based sedation will improve cardiorespiratory stability in patients undergoing same-visit bidirectional endoscopy, providing reference for clinical sedation practice during these procedures. Trial Registration: Chinese Clinical Trial Registry (Identifier: ChiCTR-ChiCTR2200055938).

15.
J Sep Sci ; 34(11): 1253-60, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21504066

RESUMEN

High-speed counter-current chromatography (HSCCC) was applied to separate C-phycocyanin (C-PC) from Spirulina platensis in the article. The suitable conditions were optimized by an orthogonal test design (L(9)(3)(3)), including the stationary phase of reverse micelle solvent system (0.10 g/mL cetyltrimethylammonium bromide [CTAB]/isooctane-hexylalcohol), mobile phase A (0.05 mol/L sodium phosphate buffer, pH 4.0, containing 0.2 mol/L KCl) and mobile phase B (0.05 mol/L sodium phosphate buffer, pH 8.0, containing 0.4 mol/L KCl). Under the selected conditions, 78.7 mg protein was purified from 200 mg crude extract of S. platensis, and the purity of the product was 4.25 based on the absorbance ratio of A(620)/A(280) , which was increased 6.85 times compared with the crude extract. Then, the protein was identified to be C-PC by MALDI-TOF/TOF-MS and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis compared with the standard. The application of HSCCC used in the separation of C-PC from S. platensis was first reported in the article. Furthermore, three kinds of tumor cell lines including human hepatoma cell line SMMC-7721, human ovarian carcinoma cell line ES-2, and human lung adenocarcinoma cell line SPCA-1 were used to evaluate the anticancer activities of the separated product, and the results showed that the separated C-PC had excellent anti-tumor actions with the IC(50) values at 2.998, 4.854, and 8.423 µg/mL, respectively, for 48 h treatment. The outcome indicates that an effective method for C-PC purification by HSCCC has been established.


Asunto(s)
Distribución en Contracorriente/métodos , Ficocianina/aislamiento & purificación , Spirulina/química , Distribución en Contracorriente/instrumentación , Micelas , Solventes/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-34186154

RESUMEN

Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata/inmunología , MAP Quinasa Quinasa Quinasa 3/metabolismo , Nocardiosis/inmunología , Aeromonas/inmunología , Aeromonas/metabolismo , Animales , Enfermedades de los Peces/microbiología , Proteínas de Peces/inmunología , Peces/metabolismo , Peces/microbiología , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , MAP Quinasa Quinasa Quinasa 3/inmunología , Nocardia/inmunología , Nocardia/metabolismo , Nocardiosis/metabolismo , Nocardiosis/microbiología
17.
Mol Immunol ; 137: 212-220, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280771

RESUMEN

As a proinflammatory cytokine of the interleukin-1 (IL-1) family, IL-18 plays important roles in host protection against bacterial, viral, and fungal infection. We cloned the open reading frame of snakehead (Channa argus) IL-18 (shIL-18) and found that it contained 609 base pairs and encoded 202 amino acid residues. The shIL-18 included a conserved IL-1-like family signature and two potential IL-1ß-converting enzyme cutting sites; one was conserved in all analyzed IL-18s, but the other was unique to shIL-18. Unlike other IL-18s, shIL-18 also contained a predicted signal peptide. In this study, shIL-18 was constitutively expressed in all tested tissues, and its expression was induced by Aeromonas schubertii and Nocardia seriolae in the head kidney and spleen in vivo and by lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid in head kidney leukocytes in vitro. Moreover, recombinant shIL-18 upregulated the expression of interferon-γ, IL-1ß, and tumor necrosis factor-α1 and -α2 and promoted the proliferation of leukocytes. Taken together, these results showed that IL-18 played crucial roles in host defense against bacterial infection in fish, as it does in mammals.


Asunto(s)
Aeromonas/patogenicidad , Enfermedades de los Peces/metabolismo , Peces/metabolismo , Infecciones por Bacterias Gramnegativas/metabolismo , Interleucina-18/metabolismo , Nocardiosis/metabolismo , Nocardia/patogenicidad , Animales , Clonación Molecular/métodos , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Peces/microbiología , Riñón Cefálico/metabolismo , Riñón Cefálico/microbiología , Lipopolisacáridos/metabolismo , Bazo/metabolismo , Bazo/microbiología , Ácidos Teicoicos/metabolismo
18.
Biomed Pharmacother ; 127: 110205, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32403046

RESUMEN

Cardiac fibroblasts play a key role in the process of myocardial remodeling and myocardial fibrosis, which will eventually lead to heart failure. Quercetin Dihydrate has been studied in cardiovascular disease, but its effect on myocardial fibrosis is not clear. Here, cardiac remodeling was induced by infusion of Ang II (1000 ng/kg/min) for 2 weeks in mice. Quercetin Dihydrate was injected intraperitoneally for 25 mM/kg body weight (BW) once two days. We found that Quercetin Dihydrate significantly reduced cardiac contractile function, fibrosis, inflammation and myocardial hypertrophy induced by Ang II. Quercetin Dihydrate could inhibit the expression of Collagen I and Collagen III, which are the markers of fibroblast differentiation. We also verified the inhibitory effect of Quercetin Dihydrate on the proliferation and differentiation of fibroblasts induced by angiotensin II in vitro. Our results show that quercetin dihydrate plays a key role in the progression of myocardial fibrosis and suggests that Quercetin Dihydrate may be a promising drug for the treatment of myocardial fibrosis.


Asunto(s)
Cardiomiopatías/prevención & control , Fibroblastos/citología , Quercetina/farmacología , Angiotensina II , Animales , Cardiomegalia/prevención & control , Cardiomiopatías/fisiopatología , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Ratas
19.
Asian J Pharm Sci ; 15(2): 252-263, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32373203

RESUMEN

This study aimed to clarify that organic anion transporters (OATs) mediate the drug-drug interaction (DDI) between imipenem and cilastatin. After co-administration with imipenem, the plasma concentrations and the plasma concentration-time curve (AUC) of cilastatin were significantly increased, while renal clearance and cumulative urinary excretion of cilastatin were decreased. At the same time, imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1 (hOAT1)-HEK293 and human OAT3 (hOAT3)-HEK293 cells. Probenecid, p-aminohippurate, and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1- and hOAT3-HEK 293 cells, respectively. The uptakes of imipenem and cilastatin in hOAT1- and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells. Moreover, the Km values of cilastatin were increased in the presence of imipenem with unchanged Vmax , indicating that imipenem inhibited the uptake of cilastatin in a competitive manner. When imipenem and cilastatin were co-administered, the level of imipenem was higher compared with imipenem alone both in vivo and in vitro. But, cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1 (DPEP1) was silenced by RNAi technology in hOAT1- and hOAT3-HEK 293 cells. In conclusion, imipenem and cilastatin are the substrates of OAT1 and OAT3. OAT1 and OAT3 mediate the DDI between imipenem and cilastatin. Meanwhile, cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.

20.
Biomed Pharmacother ; 125: 110032, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32187961

RESUMEN

This study was devised to investigate if P-glycoprotein (P-gp) mediated the drug-drug interaction (DDI) between genistein and repaglinide. When genistein was added, the plasma concentrations of repaglinide in rats were increased. The maximum plasma concentration (Cmax) of repaglinide increased from 70.80 ± 7.98 ng/mL to 124.71 ± 9.02 ng/mL and the area under the plasma concentration-time curve (AUC) increased from 134.89 ± 13.65 µg·h/L to 245.95 ± 7.24 µg·h/L. Intestinal absorption of repaglinide was markedly enhanced by genistein or P-gp inhibitor verapamil (Ver), both in situ rat jejunal perfusion studies and in vitro transport assays using everted rat intestinal sac preparations. Furthermore, the accumulation of repaglinide in both Caco-2 cells and IEC-6 cells also increased significantly in the presence of genistein and Ver. The transepithelial transport rate of repaglinide from basolateral-to-apical in MDR1-MDCK cells was 3.6-fold higher than the apical-to-basolateral rate with a net efflux ratio of 1.92 compared with mock-MDCK cells, which was significantly decreased following co-administration with genistein or Ver. In an intracellular accumulation experiment using Rhodamine 123 as a P-gp substrate, genistein significantly increased the intracellular fluorescence of Rhodamine 123. These results indicated that genistein had an inhibitory effect on the efflux function of P-gp. Through molecular docking assays we further found that genistein could bind to the nucleotide-binding domains (NBD) in the cytoplasm of P-gp, thus affecting the functions of P-gp. In conclusion, genistein inhibited the efflux of repaglinide mediated by P-gp in rats and in vitro. The findings suggested that the DDI between genistein and repaglinide is mediated by P-gp, and a dosage adjustment may be needed when they are co-administered in a clinical setting.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Carbamatos/farmacocinética , Genisteína/farmacología , Absorción Intestinal , Piperidinas/farmacocinética , Animales , Área Bajo la Curva , Transporte Biológico , Células CACO-2 , Perros , Interacciones Farmacológicas , Humanos , Células de Riñón Canino Madin Darby , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar , Rodamina 123/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA