Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Chem Chem Phys ; 25(4): 3270-3278, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36625732

RESUMEN

Short-wave ultraviolet (also called UVC) irradiation is a well-adopted method of viral inactivation due to its ability to damage genetic material. A fundamental problem with the UVC inactivation method is that its mechanism of action on viruses is still unknown at the molecular level. To address this problem, herein we investigate the response mechanism of genome materials to UVC light by means of quantum chemical calculations. The spectral properties of four nucleotides, namely, adenine, cytosine, guanine, and uracil, are mainly focused on. Meanwhile, the transition state and reaction rate constant of uracil molecules are also considered to demonstrate the difficulty level of adjacent nucleotide reaction without and with UVC irradiation. The results show that the peak wavelengths are 248.7 nm, 226.1 nm (252.7 nm), 248.3 nm, and 205.8 nm (249.2 nm) for adenine, cytosine, guanine, and uracil nucleotides, respectively. Besides, the reaction rate constants of uracil molecules are 6.419 × 10-49 s-1 M-1 and 5.436 × 1011 s-1 M-1 for the ground state and excited state, respectively. Their corresponding half-life values are 1.56 × 1048 s and 1.84 × 10-12 s. This directly suggests that the molecular reaction between nucleotides is a photochemical process and the reaction without UVC irradiation almost cannot occur.


Asunto(s)
Nucleótidos , Uracilo , Adenina , Citosina , Guanina , Rayos Ultravioleta
2.
BMC Health Serv Res ; 23(1): 151, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782193

RESUMEN

BACKGROUND: In response to an aging population, the Chinese government implemented the three-child policy in 2021 based on the comprehensive two-child policy. With the implementation of the new birth policy, people's maternal and child health (MCH) needs will also increase. The allocation and fairness of MCH human resources directly affect people's access to MCH services. The purpose of this study is to analyze the allocation of health human resources in Chinese maternal and child health care institutions, evaluate the fairness of the allocation, to provide a reference for the rational allocation of MCH human resources. METHODS: The data of health technicians, licensed (assistant) physicians, and registered nurses in maternal and child health care institutions nationwide from 2016 to 2020 were included. The health resource density index (HRDI) is used to evaluate the allocation level of MCH human resources. The Gini coefficient (G) and Theil index (T) are used to evaluate the fairness of the allocation of MCH human resources from the perspectives of population and geographic area. RESULTS: From 2016 to 2020, the average annual growth rate of the number of health technicians, licensed (assistant) physicians, and registered nurses in Chinese maternal and child health care institutions was 7.53, 6.88, and 9.12%, respectively. The Gini coefficient (G) of the three types of MCH human resources allocated by population were all below 0.23, and the Gini coefficient (G) allocated by geographical area were all above 0.65. The Theil index (T) of the three types of MCH human resources allocated by population was all lower than 0.06, and the Theil index (T) allocated by geographical area was all higher than 0.53. In addition, the three types of MCH human resources allocated by population and geographic area contributed more than 84% of the Theil index within the group (Tintra) to the Theil index (T). CONCLUSIONS: China's MCH human resources were fair in terms of population allocation, but unfair in terms of geographical area allocation. In the future, more attention should be paid to the geographical accessibility of MCH human resources, and the allocation of resources should comprehensively consider the two factors of serving the population and geographical area.


Asunto(s)
Salud Infantil , Atención a la Salud , Femenino , Niño , Humanos , Anciano , Estudios Longitudinales , Fuerza Laboral en Salud , Recursos en Salud , China , Asignación de Recursos
3.
Phys Chem Chem Phys ; 21(27): 14713-14721, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31218307

RESUMEN

In this study, the structural, electronic and optical properties of a tungsten disulfide (WS2) hybrid with indium-gallium-zinc-oxide (IGZO) heterostructures were investigated based on density functional theory (DFT) calculations. According to the results of binding energy, charge density difference and electron localization function of heterostructures, we found that the WS2 and IGZO monolayers were bound to each other via non-covalent interactions with large binding energy. The calculated results illustrate that the AAii stacking pattern has an indirect band gap of 1.643 eV, while AAi and AB stacking patterns have maximum direct-gaps of 1.102 eV and 1.234 eV, respectively. Under an external E-field and mechanical strain, the response of the energy gap of the WS2/IGZO heterostructure monotonically decreased over a wide range, even with a semiconductor-metal transition. In addition, we investigated the optical properties of the heterostructure and found that it exhibits a much broad spectral responsivity (from visible light to deep UV light) and a more pronounced optical absorption than WS2 and IGZO monolayers. Moreover, the tensile strain could weaken the photoresponse of the heterostructure to the UV light and enhance the response for the visible light; under compressive strain, the heterostructure showed a strong absorption peak in the UV light. Meanwhile, a red-shift was observed under an external strain. All these unique and tunable properties indicate that the WS2/IGZO heterostructure is a good candidate for nanoelectronic and photoelectronic devices, such as field-effect transistors, flexible sensors, photodetectors and photonic devices.

4.
Phys Chem Chem Phys ; 19(45): 30852-30860, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29134990

RESUMEN

The sensing performances of pristine and X-doped phosphorene substrates (X = Al, Si, and S atoms) toward the adsorption of the toxic gases HCN and HNC were systematically investigated by first-principles simulations. The numerical results show that the pristine phosphorene is sensitive to HCN and HNC molecules with moderate adsorption energy, excellent charge transfer, high sensitivity and selectivity, implying its potential applications as excellent HCN and HNC sensors. In addition, the Al-doped phosphorene exhibits extremely high reactive activity toward HCN and HNC gases; thus, it has potential for use as a metal-free catalyst for activating or catalyzing HCN or HNC adsorbates. Moreover, the transport properties, i.e., current-voltage (I-V) characteristics, were calculated by the non-equilibrium Green's function (NEGF) method within the framework of the density functional theory (DFT). The obtained results reveal that the adsorbed HCN or HNC gas molecules have a remarkable impact on the electronic conductivity of phosphorene, and the zigzag direction of phosphorene is more sensitive to gas molecules than the armchair direction. The combination of the high sensitivity, superior selectivity, and moderate adsorption energy of pristine phosphorene toward HCN or HNC gas molecules adsorption, makes phosphorene an excellent candidate for HCN and HNC sensors.

5.
Phys Chem Chem Phys ; 18(24): 16302-9, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27253913

RESUMEN

The structural, electronic and optical properties of the graphene hybrid with stanene, the tin counterpart of graphene, are investigated by means of density functional calculation with the observation of band gap opening and enhanced visible light response. The lattice mismatch between graphene and stanene is taken into consideration and several stacking methods for model construction are proposed to study the possible effects. The Dirac feature can be observed in this bilayer system with relatively stronger interlayer interaction than weak van der Waals forces, which is ascribed to the unsaturated p orbital of stanene. Despite the mutual semi-metal nature of graphene and stanene, it is significant to note a band gap opening and the electrical neutrality of the bilayer. The combination of high carrier mobility of graphene and the excellent spin Hall effect of stanene is expected to coexist in the bilayer structure. In addition, we found that the stanene monolayer has a relatively lower work function than graphene and more importantly, it exhibits more pronounced optical absorption than graphene. The results indicate that a graphene/stanene heterobilayer will facilitate the performance of stanene related spintronic devices and is therefore a good candidate for photoelectronic devices.

6.
Phys Chem Chem Phys ; 18(24): 16386-95, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27265511

RESUMEN

Using density functional theory calculations with van der Waals correction, we show that the electronic properties (band gap and carrier mobility) and work functions of graphane/fully hydrogenated hexagonal boron nitride (G/fHBN) heterobilayers can be favorably tuned via heteronuclear dihydrogen bonding (C-HH-B and C-HH-N) and an external electric field. Our results reveal that G/fHBN heterobilayers have different direct band gaps of ∼1.2 eV and ∼3.5 eV for C-HH-B and C-HH-N bonds, respectively. In particular, these band gaps can be effectively modulated by altering the direction and strength of the external electric field (E-field), and correspondingly exhibit a semiconductor-metal transition. The conformation and stability of G/fHBN heterobilayers show a strong dependence on the heteronuclear dihydrogen bonding. Fantastically, these bonds are stable enough under a considerable external E-field as compared with other van der Waals (vdW) 2D layered materials. The mobilities of G/fHBN heterobilayers we predicted are hole-dominated, reasonably high (improvable up to 200 cm(2) V(-1) s(-1)), and extremely isotropic. We also demonstrate that the work function of G/fHBN heterobilayers is very sensitive to the external E-field and is extremely low. These findings make G/fHBN heterobilayers very promising materials for field-effect transistors and light-emitting devices, and inspire more efforts in the development of 2D material systems using weak interlayer interactions and electric field control.

7.
Phys Chem Chem Phys ; 18(24): 16229-36, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27250915

RESUMEN

Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

8.
ACS Appl Mater Interfaces ; 16(27): 35651-35665, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38922439

RESUMEN

In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan oligosaccharide (COS) and in situ welding of the generated LIGs to engineering plastic substrates are achieved simultaneously. The resulting LIG products display a hierarchical porous architecture, excellent electrical conductivity (6.3 Ω sq-1), and superhydrophilic properties, making them ideal electrode materials for MSCs. The pyrolysis-welding coupled mechanism is deeply discussed through cross-sectional analyses and finite element simulations. The MSCs prepared by COSLL exhibit considerable areal capacitance of over 4 mF cm-2, which is comparable to that of the polyimide-LIG-based counterpart. COSLL is also compatible with complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) processes, enabling the fabrication of LIG/Au MSCs with comparable areal capacitance and lower internal resistance. Furthermore, the as-prepared MSCs demonstrate excellent mechanical robustness, long-cycle capability, and ease of series-parallel integration, benefiting their practical application in various scenarios. With the use of eco-friendly biomass carbon source and convenient process flowchart, the COSLL emerges as an attractive method for the fabrication of flexible LIG on-chip MSCs and various other advanced LIG devices.

9.
ACS Appl Mater Interfaces ; 15(34): 41055-41066, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37523469

RESUMEN

The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex fabrication processes and expensive microfabrication methods remains a significant challenge. In this study, we introduce a laser pyrolysis direct writing technology that enables rapid and efficient fabrication of high-performance flexible pressure sensors with a micro-truncated pyramid array. The pressure sensor demonstrates exceptional sensitivities, with the values of 3132.0, 322.5, and 27.8 kPa-1 in the pressure ranges of 0-0.5, 0.5-3.5, and 3.5-10 kPa, respectively. Furthermore, the sensor exhibits rapid response times (loading: 22 ms, unloading: 18 ms) and exceptional reliability, enduring over 3000 pressure loading and unloading cycles. Moreover, the pressure sensor can be easily integrated into a sensor array for spatial pressure distribution detection. The laser pyrolysis direct writing technology introduced in this study presents a highly efficient and promising approach to designing and fabricating high-performance flexible pressure sensors utilizing micro-structured polymer substrates.

10.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432307

RESUMEN

Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural and performance analysis. We determine the carrier mobility of hydrogenated boron phosphide, reveal the effect of structural and material parameters on resonance frequencies, and discuss the variation of the electric field at the two tips. The results suggest that the mobilities of electrons for hydrogenated BP monolayer in the armchair and zigzag directions are 0.51 and 94.4 cm2·V-1·s-1, whereas for holes, the values are 136.8 and 175.15 cm2·V-1·s-1. Meanwhile, the transmission spectra of the bowtie triangle ring microstructure can be controlled by adjusting the length of the bowtie triangle ring microstructure and carrier density of hydrogenated BP. With the increasing length, the transmission spectrum has a red-shift and the electric field at the tips of equilateral triangle rings is significantly weakened. Furthermore, the theoretical sensitivity of the BTR structure reaches 100 GHz/RIU, which is sufficient to determine healthy and COVID-19-infected individuals. Our findings may open up new avenues for promising applications in the rapid diagnosis of COVID-19.

11.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364665

RESUMEN

Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-shaped graphene structure. The graphene metasurface exhibits a dual-resonance response, whose resonance frequency strongly varies with the geometrical parameters of the proposed metasurface, the carrier density of graphene, and the analyte composition. The transparency window, including width and position, can be artificially controlled by adjusting the geometrical parameters or the Fermi energy. Furthermore, the sensing parameters of the graphene metasurface for cancerous and normal cells are investigated, focusing on two factors, namely cell quantity and position on the metasurface. The simulated results clearly show that the theoretical sensitivity, figure of merit, and quantity of the graphene metasurface for breast cells reach 1.21 THz/RIU, 2.75 RIU-1, and 2.43, respectively. Our findings may open up new avenues for promising applications in the diagnosis of cancers.

12.
RSC Adv ; 11(6): 3509, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35426989

RESUMEN

[This corrects the article DOI: 10.1039/D0RA06730J.].

13.
RSC Adv ; 10(66): 40480-40488, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520849

RESUMEN

Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles calculations, we investigate the interaction mechanism of chemical agents with 3CL hydrolase of SARS-CoV-2. The radial distribution functions indicate that the biocidal ingredients are sensitive to the unsaturated oxygen atoms of 3CL hydrolase and their interactions remarkably depend on the concentration of the biocidal ingredients. Besides, we find that the adsorption performance of the active ingredients for the unsaturated oxygen atoms is superior to other styles of atoms. These computational results not only decipher the inactivation mechanism of chemical agents against SARS-CoV-2 from the molecule-level perspective, but also provide a theoretical basis for the development and application of new chemical methods with a high disinfection efficiency.

14.
Nanoscale ; 9(9): 2992-3001, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098300

RESUMEN

Ferromagnetic character and biocompatible properties have become key factors for developing next-generation spintronic devices and show potential in biomedical applications. Unfortunately, the Mn-containing monolayer is not biocompatible though it has been extensively studied, and the Cr-containing monolayer is not environmental friendly, although these monolayers are ferromagnetic. Herein, we systematically investigated new types of 2D ferromagnetic monolayers Nb3X8 (X = Cl, Br or I) by means of first principles calculations together with mean field approximation based on the classical Heisenberg model. The small cleavage energy and high in-plane stiffness have been calculated to evaluate the feasibility of exfoliating the monolayers from their layered bulk phase. Spin-polarized calculations together with self-consistently determined Hubbard U were utilized to assess a strong correlation energy, which demonstrated that Nb3X8 (X = Cl, Br or I) monolayers are ferromagnetic. The calculated Curie temperatures for Nb3Cl8, Nb3Br8 and Nb3I8 were 31, 56 and 87 K, respectively, which may be increased by external strain, or electron or hole doping. Moreover, the Nb3X8 (X = Cl, Br or I) monolayers exhibited strong visible and infrared light absorption. The biocompatibility, ferromagnetism and considerable visible and infrared light absorption render the Nb3X8 (X = Cl, Br or I) monolayers with great potential application in next-generation biocompatible spintronic and optoelectronic devices.

15.
Sci Rep ; 5: 17592, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26621049

RESUMEN

Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA