Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(1): e0260923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38038453

RESUMEN

IMPORTANCE: Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited by drug resistance and the non-universal vaccine administration. Hence there is a need for host-targeted therapies against influenza to provide an effective alternative therapeutic target. Sec13 was identified as a novel host interactor of influenza. Endoplasmic reticulum-to-Golgi transport is an important pathway of influenza virus replication and viral export. Specifically, Sec13 has a functional role in influenza replication and virulence.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Replicación Viral , Aparato de Golgi/metabolismo
2.
NPJ Vaccines ; 9(1): 43, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396073

RESUMEN

The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA