Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137170

RESUMEN

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Microtúbulos , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Animales , Microtúbulos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Centrosoma/metabolismo , Proliferación Celular , Movimiento Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética
2.
EMBO J ; 40(19): e104549, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368973

RESUMEN

The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus-end-out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E-cadherin, a cell adhesion molecule, localizes to these NSC-neuropil junctions. Msps and a plus-end directed motor protein Kinesin-2 promote NSC cell cycle re-entry and target E-cadherin to NSC-neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps-Kinesin-2 pathway that governs NSC reactivation, in part, by targeting E-cad to NSC-neuropil contact sites.


Asunto(s)
Ciclo Celular/genética , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Fase de Descanso del Ciclo Celular/genética , Animales , Biomarcadores , Diferenciación Celular/genética , Polaridad Celular , Extensiones de la Superficie Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/metabolismo
3.
PLoS Biol ; 20(10): e3001834, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223339

RESUMEN

Neural stem cells (NSCs) divide asymmetrically to balance their self-renewal and differentiation, an imbalance in which can lead to NSC overgrowth and tumor formation. The functions of Parafibromin, a conserved tumor suppressor, in the nervous system are not established. Here, we demonstrate that Drosophila Parafibromin/Hyrax (Hyx) inhibits ectopic NSC formation by governing cell polarity. Hyx is essential for the asymmetric distribution and/or maintenance of polarity proteins. hyx depletion results in the symmetric division of NSCs, leading to the formation of supernumerary NSCs in the larval brain. Importantly, we show that human Parafibromin rescues the ectopic NSC phenotype in Drosophila hyx mutant brains. We have also discovered that Hyx is required for the proper formation of interphase microtubule-organizing center and mitotic spindles in NSCs. Moreover, Hyx is required for the proper localization of 2 key centrosomal proteins, Polo and AurA, and the microtubule-binding proteins Msps and D-TACC in dividing NSCs. Furthermore, Hyx directly regulates the polo and aurA expression in vitro. Finally, overexpression of polo and aurA could significantly suppress ectopic NSC formation and NSC polarity defects caused by hyx depletion. Our data support a model in which Hyx promotes the expression of polo and aurA in NSCs and, in turn, regulates cell polarity and centrosome/microtubule assembly. This new paradigm may be relevant to future studies on Parafibromin/HRPT2-associated cancers.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Polaridad Celular , Centrosoma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo
4.
EMBO Rep ; 24(9): e56624, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37440685

RESUMEN

The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Mamíferos/metabolismo
5.
PLoS Biol ; 17(6): e3000276, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170139

RESUMEN

The ability of neural stem cells (NSCs) to transit between quiescence and proliferation is crucial for brain development and homeostasis. Drosophila Hippo pathway maintains NSC quiescence, but its regulation during brain development remains unknown. Here, we show that CRL4Mahj, an evolutionarily conserved E3 ubiquitin ligase, is essential for NSC reactivation (exit from quiescence). We demonstrate that damaged DNA-binding protein 1 (DDB1) and Cullin4, two core components of Cullin4-RING ligase (CRL4), are intrinsically required for NSC reactivation. We have identified a substrate receptor of CRL4, Mahjong (Mahj), which is necessary and sufficient for NSC reactivation. Moreover, we show that CRL4Mahj forms a protein complex with Warts (Wts/large tumor suppressor [Lats]), a kinase of the Hippo signaling pathway, and Mahj promotes the ubiquitination of Wts. Our genetic analyses further support the conclusion that CRL4Mahj triggers NSC reactivation by inhibition of Wts. Given that Cullin4B mutations cause mental retardation and cerebral malformation, similar regulatory mechanisms may be applied to the human brain.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Proteínas Portadoras/fisiología , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Humanos , Unión Proteica/fisiología , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
6.
Nat Commun ; 15(1): 8557, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419973

RESUMEN

A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células-Madre Neurales , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Sumoilación , Enzimas Ubiquitina-Conjugadoras , Animales , Células-Madre Neurales/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Encéfalo/metabolismo , Fosforilación , Neurogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas
7.
Sci Adv ; 10(30): eadl4694, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047090

RESUMEN

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.


Asunto(s)
Actinas , Astrocitos , Proteínas de Drosophila , Células-Madre Neurales , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Actinas/metabolismo , Astrocitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP rho/metabolismo
8.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38903085

RESUMEN

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.

9.
Adv Sci (Weinh) ; 10(33): e2302527, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37867250

RESUMEN

There is no effective therapy for ischemic stroke following the acute stage. Neural transplantation offers a potential option for repairing the ischemic lesion. However, this strategy is hindered by the poor survival of the neural precursor cells (NPCs) that are transplanted into the inflammatory ischemic core. Here, a chemical cocktail consisting of fibrinogen and maraviroc is developed to promote the survival of the transplanted NPCs in the ischemic core of the mouse cerebral cortex. The grafted NPCs survive in the presence of the cocktail but not fibrinogen or maraviroc alone at day 7. The surviving NPCs divide and differentiate to mature neurons by day 30, reconstituting the infarct cortex with vascularization. Molecular analysis in vivo and in vitro shows that blocking the activation of CCR5 on the NPCs protects the NPCs from apoptosis induced by pro-inflammatory factors, revealing the underlying protective effect of the cocktail for NPCs. The findings open an avenue to enable survival of the transplanted NPCs under the inflammatory neurological conditions like stroke.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Maraviroc/farmacología , Diferenciación Celular/fisiología , Encéfalo , Neuronas
10.
Dev Cell ; 58(19): 1933-1949.e5, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567172

RESUMEN

The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.

11.
Cell Rep ; 27(4): 987-996.e3, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018143

RESUMEN

Mutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development. Loss of intS5, intS8, and intS1 generated ectopic type II neuroblasts. INP-specific knockdown of intS8, intS1, and intS2 resulted in the formation of excess type II neuroblasts, indicating that Integrator prevents INP dedifferentiation. Cell-type-specific DamID analysis identified 1413 IntS5-binding sites in INPs, including zinc-finger transcription factor earmuff (erm). Furthermore, erm expression is lost in intS5 and intS8 mutant neuroblast lineages, and intS8 genetically interacts with erm to suppress the formation of ectopic neuroblasts. Taken together, our data demonstrate that the Drosophila Integrator complex plays a critical role in preventing INP dedifferentiation primarily by regulating a key transcription factor Erm that also suppresses INP dedifferentiation.


Asunto(s)
Desdiferenciación Celular/genética , Proteínas de Drosophila/fisiología , Drosophila/citología , Células-Madre Neurales/citología , Animales , Linaje de la Célula , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica
12.
Elife ; 72018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482721

RESUMEN

A central feature of most stem cells is the ability to self-renew and undergo differentiation via asymmetric division. However, during asymmetric division the role of phosphatidylinositol (PI) lipids and their regulators is not well established. Here, we show that the sole type I PI transfer protein, Vibrator, controls asymmetric division of Drosophilaneural stem cells (NSCs) by physically anchoring myosin II regulatory light chain, Sqh, to the NSC cortex. Depletion of vib or disruption of its lipid binding and transfer activities disrupts NSC polarity. We propose that Vib stimulates PI4KIIIα to promote synthesis of a plasma membrane pool of phosphatidylinositol 4-phosphate [PI(4)P] that, in turn, binds and anchors myosin to the NSC cortex. Remarkably, Sqh also binds to PI(4)P in vitro and both Vib and Sqh mediate plasma membrane localization of PI(4)P in NSCs. Thus, reciprocal regulation between Myosin and PI(4)P likely governs asymmetric division of NSCs.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Miosina Tipo II/metabolismo , Células-Madre Neurales/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Unión Proteica
13.
PLoS One ; 8(9): e75525, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086553

RESUMEN

Campylobacterconcisus is an oral bacterium. A number of studies detected a significantly higher prevalence of C. concisus in the intestinal tract of patients with inflammatory bowel disease (IBD) as compared to controls. The prevalence of zonula occluden toxin (zot) gene, which encodes a toxin known to increase intestinal permeability, in oral C. concisus strains is unknown. Increased intestinal permeability is a feature of IBD. A total of 56 oral C. concisus strains isolated from 19 patients with IBD and 20 controls were examined (some individuals were colonized with multiple strains). A filtration method was used for isolation of C. concisus from saliva samples. SDS-PAGE was used to define strains. PCR was used to amplify zot from C. concisus strains. Positive PCR products were sequenced and the nucleotides and amino acids were compared. Of the 56 oral C. concisus strains examined, 17 strains (30.4%) were positive for zot. The prevalence of zot-positive oral C. concisus strains was 54.5% in patients with active IBD, which was not significantly different from that in healthy controls (40%). Polymorphisms of C. concisus zot were revealed. zot (808T) , zot (350-351AC) and zot (Multiple) were detected only in patients with IBD, but not in healthy controls. Both zot (808T) and zot (Multiple) alleles resulted in substitution of valine at position 270, which occurred in 36.4% of patients with active IBD but not in healthy controls (P = 0.011). Furthermore, the prevalence of multiple oral C. concisus strains in patients with active IBD was significantly higher than that in healthy controls (P = 0.013). This is the first study reporting the prevalence of zot in human oral C. concisus strains and the polymorphisms of C. concisus zot gene. The data suggest that the possible role of C. concisus strains containing specific polymorphic forms of zot gene in human IBD should be investigated.


Asunto(s)
Campylobacter/genética , Toxina del Cólera/genética , Enfermedades Inflamatorias del Intestino/microbiología , Polimorfismo Genético/genética , Saliva/microbiología , Adolescente , Adulto , Anciano , Alelos , Infecciones por Campylobacter/microbiología , Estudios de Casos y Controles , Niño , Preescolar , Endotoxinas , Humanos , Persona de Mediana Edad , Prevalencia , Uniones Estrechas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA