RESUMEN
As with many other musical traits, the social environment is a key influence on the development of singing ability. While the familial singing environment is likely to be formative, its role relative to other environmental influences such as training is unclear. We used structural equation modeling to test relationships among demographic characteristics, familial environmental variables (early and current singing with family), vocal training, and singing ability in a large, previously documented sample of Australian twins (N = 1163). Notably, early singing with family, and to a lesser extent vocal training, predicted singing ability, whereas current singing with family did not. Early familial singing also mediated the relationship between sex and singing ability, with men who sang less with family during childhood showing poorer ability. Bivariate twin models between early familial singing and singing ability showed the phenotypic correlation was largely explained by shared environmental influences. This raises the possibility of a sensitive period for singing ability, with sociocultural expectations around singing potentially differentiating the developmental trajectories of this skill for men and women.
RESUMEN
Ubiquitination is one of the most important post-translational modifications in eukaryotes. The ubiquitination cascade includes ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). The E3 ligases, responsible for substrate recognition, are the most abundant and varied proteins in the cascade and the most studied. SKP1-CUL1-F-Box (SCF)-type E3 ubiquitin ligases are multi-subunit RING (Really Interesting New Gene) E3 ubiquitin ligases, composed of CUL1 (Cullin 1), RBX1 (RING BOX 1), SKP1 (S-phase Kinase-associated Protein 1), and F-box proteins. In vitro ubiquitination assays, used for studying the specific recognition of substrate proteins by E3 ubiquitin ligases, require the purification of all components involved in the cascade, and for assays with SCF-type E3 ligases, additional proteins (several SCF complex subunits). Here, the Duet expression system was used to co-express E1, E2, ubiquitin, ubiquitylation target (substrate), and the four subunits of a SCF-type E3 ligase in E. coli. When these proteins co-exist in bacterial cells, ubiquitination occurs and can be detected by Western Blot. The effectiveness of this bacterial system for detecting ubiquitination cascade activity was demonstrated by replicating both AtSCFTIR1-mediated and human SCFFBXO28-mediated ubiquitylation in bacteria. This system provides a basic but adaptable platform for the study of SCF-type E3 ubiquitin ligases.
Asunto(s)
Escherichia coli , Proteínas Ligasas SKP Cullina F-box , Ubiquitinación , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Proteínas Cullin/metabolismoRESUMEN
Research has shown that people inaccurately assess their own abilities on self-report measures, including academic, athletic, and music ability. Evidence suggests this is also true for singing, with individuals either overestimating or underestimating their level of singing competency. In this paper, we present the Melbourne Singing Tool Questionnaire (MST-Q), a brief 16-item measure exploring people's self-perceptions of singing ability and engagement with singing. Using a large sample of Australian twins (n = 996), we identified three latent factors underlying MST-Q items and examined whether these factors were related to an objective phenotypic measure of singing ability. The three factors were identified as Personal Engagement, Social Engagement, and Self-Evaluation. All factors were positively associated with objective singing performance, with the Self-Evaluation factor yielding the strongest correlation (r = 0.66). Both the Self-Evaluation factor and a single self-report item of singing ability shared the same predictive strength. Contrary to expectations, our findings suggest that self-evaluation strongly predicts singing ability, and this self-evaluation is of higher predictive value than self-reported engagement with music and singing.
Asunto(s)
Música , Canto , Humanos , Autoevaluación Diagnóstica , Australia , Encuestas y CuestionariosRESUMEN
Singing ability is a complex human skill influenced by genetic and environmental factors, the relative contributions of which remain unknown. Currently, genetically informative studies using objective measures of singing ability across a range of tasks are limited. We administered a validated online singing tool to measure performance across three everyday singing tasks in Australian twins (n = 1189) to explore the relative genetic and environmental influences on singing ability. We derived a reproducible phenotypic index for singing ability across five performance measures of pitch and interval accuracy. Using this index we found moderate heritability of singing ability (h 2 = 40.7%) with a striking, similar contribution from shared environmental factors (c 2 = 37.1%). Childhood singing in the family home and being surrounded by music early in life both significantly predicted the phenotypic index. Taken together, these findings show that singing ability is equally influenced by genetic and shared environmental factors.
RESUMEN
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge.