Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 146(7): 2928-2943, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625756

RESUMEN

Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Humanos , Estudios Transversales , Filamentos Intermedios , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición , Red Nerviosa/diagnóstico por imagen
2.
Neuroimage ; 261: 119511, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914670

RESUMEN

Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connectivity was computed over 222 regions of interest and group differences were evaluated in terms of components projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted as opposed to widely shared variance.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Saludable , Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos
3.
Mov Disord ; 36(3): 662-671, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33211330

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS: We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS: Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION: Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Globo Pálido , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia
4.
Mov Disord ; 36(11): 2559-2568, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34109682

RESUMEN

BACKGROUND: Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). OBJECTIVE: The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. METHODS: We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. RESULTS: At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. CONCLUSIONS: These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Vermis Cerebeloso , Enfermedad de Parkinson , Cerebelo/diagnóstico por imagen , Marcha , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen
5.
Cereb Cortex ; 30(3): 1716-1734, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504262

RESUMEN

Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks-altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


Asunto(s)
Encéfalo/fisiología , Hemodinámica/fisiología , Red Nerviosa/fisiología , Descanso/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Fenómenos Fisiológicos del Sistema Nervioso
6.
J Neurovirol ; 22(1): 80-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26265137

RESUMEN

Individuals infected with HIV are living longer due to effective treatment with combination antiretroviral therapy (cART). Despite these advances, HIV-associated neurocognitive disorders (HAND) remain prevalent. In this study, we analyzed resting state functional connectivity (rs-fc) data from HIV-infected and matched HIV-uninfected adults aged 60 years and older to determine associations between HIV status, neuropsychological performance, and clinical variables. HIV-infected participants with detectable plasma HIV RNA exhibited decreased rs-fc within the salience (SAL) network compared to HIV-infected participants with suppressed plasma HIV RNA. We did not identify differences in rs-fc within HIV-infected individuals by HAND status. Our analysis identifies focal deficits in the SAL network that may be mitigated with suppression of plasma virus. However, these findings suggest that rs-fc may not be sensitive as a marker of HAND among individuals with suppressed plasma viral loads.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Infecciones por VIH/fisiopatología , Red Nerviosa/fisiopatología , ARN Viral/sangre , Anciano , Terapia Antirretroviral Altamente Activa , Encéfalo/virología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Estudios de Casos y Controles , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/virología , Femenino , Neuroimagen Funcional , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/efectos de los fármacos , Red Nerviosa/virología , Pruebas Neuropsicológicas , ARN Viral/antagonistas & inhibidores , Carga Viral/efectos de los fármacos
7.
J Neurosci Methods ; 402: 110011, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37981126

RESUMEN

BACKGROUND: Resting-state fMRI is increasingly used to study the effects of gliomas on the functional organization of the brain. A variety of preprocessing techniques and functional connectivity analyses are represented in the literature. However, there so far has been no systematic comparison of how alternative methods impact observed results. NEW METHOD: We first surveyed current literature and identified alternative analytical approaches commonly used in the field. Following, we systematically compared alternative approaches to atlas registration, parcellation scheme, and choice of graph-theoretical measure as regards differentiating glioma patients (N = 59) from age-matched reference subjects (N = 163). RESULTS: Our results suggest that non-linear, as opposed to affine registration, improves structural match to an atlas, as well as measures of functional connectivity. Functionally- as opposed to anatomically-derived parcellation schemes maximized the contrast between glioma patients and reference subjects. We also demonstrate that graph-theoretic measures strongly depend on parcellation granularity, parcellation scheme, and graph density. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: Our current work primarily focuses on technical optimization of rs-fMRI analysis in glioma patients and, therefore, is fundamentally different from the bulk of papers discussing glioma-induced functional network changes. We report that the evaluation of glioma-induced alterations in the functional connectome strongly depends on analytical approaches including atlas registration, choice of parcellation scheme, and graph-theoretical measures.


Asunto(s)
Conectoma , Glioma , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen
8.
Ann Clin Transl Neurol ; 8(5): 1096-1109, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33943045

RESUMEN

OBJECTIVE: To enable use of clinical magnetic resonance images (MRIs) to quantify abnormalities in normal appearing (NA) white matter (WM) and gray matter (GM) in multiple sclerosis (MS) and to determine associations with MS-related disability. Identification of these abnormalities heretofore has required specialized scans not routinely available in clinical practice. METHODS: We developed an analytic technique which normalizes image intensities based on an intensity atlas for quantification of WM and GM abnormalities in standardized MRIs obtained with clinical sequences. Gaussian mixture modeling is applied to summarize image intensity distributions from T1-weighted and 3D-FLAIR (T2-weighted) images from 5010 participants enrolled in a multinational database of MS patients which collected imaging, neuroperformance and disability measures. RESULTS: Intensity distribution metrics distinguished MS patients from control participants based on normalized non-lesional signal differences. This analysis revealed non-lesional differences between relapsing MS versus progressive MS subtypes. Further, the correlation between our non-lesional measures and disability was approximately three times greater than that between total lesion volume and disability, measured using the patient derived disease steps. Multivariate modeling revealed that measures of extra-lesional tissue integrity and atrophy contribute uniquely, and approximately equally, to the prediction of MS-related disability. INTERPRETATION: These results support the notion that non-lesional abnormalities correlate more strongly with MS-related disability than lesion burden and provide new insight into the basis of abnormalities in NA WM. Non-lesional abnormalities distinguish relapsing from progressive MS but do not distinguish between progressive subtypes suggesting a common progressive pathophysiology. Image intensity parameters and existing biomarkers each independently correlate with MS-related disability.


Asunto(s)
Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Biomarcadores , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Índice de Severidad de la Enfermedad , Sustancia Blanca/patología
9.
Brain Connect ; 11(3): 239-249, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33430685

RESUMEN

Aim: Identify a global resting-state functional connectivity (gFC) signature in mutation carriers (MC) from the Dominantly Inherited Alzheimer Network (DIAN). Assess the gFC with regard to amyloid (A), tau (T), and neurodegeneration (N) biomarkers, and estimated years to symptom onset (EYO). Introduction: Cross-sectional measures were assessed in MC (n = 171) and mutation noncarrier (NC) (n = 70) participants. A functional connectivity (FC) matrix that encompassed multiple resting-state networks was computed for each participant. Methods: A global FC was compiled as a single index indicating FC strength. The gFC signature was modeled as a nonlinear function of EYO. The gFC was linearly associated with other biomarkers used for assessing the AT(N) framework, including cerebrospinal fluid (CSF), positron emission tomography (PET) molecular biomarkers, and structural magnetic resonance imaging. Results: The gFC was reduced in MC compared with NC participants. When MC participants were differentiated by clinical dementia rating (CDR), the gFC was significantly decreased in MC CDR >0 (demented) compared with either MC CDR 0 (cognitively normal) or NC participants. The gFC varied nonlinearly with EYO and initially decreased at EYO = -24 years, followed by a stable period followed by a further decline near EYO = 0 years. Irrespective of EYO, a lower gFC associated with values of amyloid PET, CSF Aß1-42, CSF p-tau, CSF t-tau, 18F-fluorodeoxyglucose, and hippocampal volume. Conclusions: The gFC correlated with biomarkers used for defining the AT(N) framework. A biphasic change in the gFC suggested early changes associated with CSF amyloid and later changes associated with hippocampal volume.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
10.
Neurology ; 94(4): e384-e396, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31848257

RESUMEN

OBJECTIVE: To investigate in a cross-sectional study the contributions of altered cerebellar resting-state functional connectivity (FC) to cognitive impairment in Parkinson disease (PD). METHODS: We conducted morphometric and resting-state FC-MRI analyses contrasting 81 participants with PD and 43 age-matched healthy controls using rigorous quality assurance measures. To investigate the relationship of cerebellar FC to cognitive status, we compared participants with PD without cognitive impairment (Clinical Dementia Rating [CDR] scale score 0, n = 47) to participants with PD with impaired cognition (CDR score ≥0.5, n = 34). Comprehensive measures of cognition across the 5 cognitive domains were assessed for behavioral correlations. RESULTS: The participants with PD had significantly weaker FC between the vermis and peristriate visual association cortex compared to controls, and the strength of this FC correlated with visuospatial function and global cognition. In contrast, weaker FC between the vermis and dorsolateral prefrontal cortex was found in the cognitively impaired PD group compared to participants with PD without cognitive impairment. This effect correlated with deficits in attention, executive functions, and global cognition. No group differences in cerebellar lobular volumes or regional cortical thickness of the significant cortical clusters were observed. CONCLUSION: These results demonstrate a correlation between cerebellar vermal FC and cognitive impairment in PD. The absence of significant atrophy in cerebellum or relevant cortical areas suggests that this could be related to local pathophysiology such as neurotransmitter dysfunction.


Asunto(s)
Cerebelo/fisiopatología , Disfunción Cognitiva/fisiopatología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Anciano , Disfunción Cognitiva/etiología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Descanso
11.
Neuron ; 107(3): 580-589.e6, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32778224

RESUMEN

To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor system, while internal connectivity within the disused sub-circuit was maintained. Functional disconnection was evident within 48 h, progressed throughout the cast period, and reversed after cast removal. During the cast period, large, spontaneous pulses of activity propagated through the disused somatomotor sub-circuit. The adult brain seems to rely on regular use to maintain its functional architecture. Disuse-driven spontaneous activity pulses may help preserve functionally disconnected sub-circuits.


Asunto(s)
Corteza Motora/diagnóstico por imagen , Plasticidad Neuronal/fisiología , Restricción Física , Actividades Cotidianas , Moldes Quirúrgicos , Femenino , Lateralidad Funcional , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiología , Destreza Motora/fisiología , Fuerza Muscular/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Extremidad Superior
12.
J Neurol ; 263(6): 1083-91, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27025853

RESUMEN

Spontaneous brain activity is required for the development and maintenance of normal brain function. Many disease processes disrupt the organization of intrinsic brain activity, but few pervasively reduce the amplitude of resting state blood oxygen level dependent (BOLD) fMRI fluctuations. We report the case of a female with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, longitudinally studied during the course of her illness to determine the contribution of NMDAR signaling to spontaneous brain activity. Resting state BOLD fMRI was measured at the height of her illness and 18 weeks following discharge from hospital. Conventional resting state networks were defined using established methods. Correlation and covariance matrices were calculated by extracting the BOLD time series from regions of interest and calculating either the correlation or covariance quantity. The intrinsic activity was compared between visits, and to expected activity from 45 similarly aged healthy individuals. Near the height of the illness, the patient exhibited profound loss of consciousness, high-amplitude slowing of the electroencephalogram, and a severe reduction in the amplitude of spontaneous BOLD fMRI fluctuations. The patient's neurological status and measures of intrinsic activity improved following treatment. We conclude that NMDAR-mediated signaling plays a critical role in the mechanisms that give rise to organized spontaneous brain activity. Loss of intrinsic activity is associated with profound disruptions of consciousness and cognition.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encefalitis Antirreceptor N-Metil-D-Aspartato/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen por Resonancia Magnética , Encefalitis Antirreceptor N-Metil-D-Aspartato/psicología , Circulación Cerebrovascular/fisiología , Progresión de la Enfermedad , Electroencefalografía , Femenino , Humanos , Estudios Longitudinales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Descanso , Inconsciencia/diagnóstico por imagen , Inconsciencia/fisiopatología , Inconsciencia/psicología , Adulto Joven
13.
J Cereb Blood Flow Metab ; 35(10): 1697-702, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26036937

RESUMEN

Arterial spin labeling (ASL) is a noninvasive method to measure cerebral blood flow (CBF). Arterial spin labeling is susceptible to artifact generated by head motion; this artifact is propagated through the subtraction procedure required to calculate CBF. We introduce a novel strategy for mitigating this artifact based on weighting tag/control volumes according to a noise estimate. We evaluated this strategy (DVARS weighting) in application to both pulsed ASL (PASL) and pseudo-continuous ASL (pCASL) in a cohort of normal adults (N=57). Application of DVARS weighting significantly improved test-retest repeatability as assessed by the intra-class correlation coefficient. Before the application of DVARS weighting, mean gray matter intra-class correlation (ICC) between subsequent ASL runs was 0.48 and 0.51 in PASL and pCASL, respectively. With weighting, ICC was significantly improved to 0.63 and 0.58.


Asunto(s)
Arterias Cerebrales/anatomía & histología , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Artefactos , Circulación Cerebrovascular , Estudios de Cohortes , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/irrigación sanguínea , Cabeza , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Movimiento (Física) , Valores de Referencia , Marcadores de Spin
14.
J Neuroimmune Pharmacol ; 10(4): 517-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26446778

RESUMEN

HIV causes neural dysfunction in infected individuals. This dysfunction often manifests as cognitive symptoms and can be detected using neuroimaging. Highly active anti-retroviral therapy (HAART), in addition to providing virologic control, has reduced the number of profoundly impaired individuals but more mild forms of neurocognitive disorders remains prevalent. A potential confound in previous studies of HIV-associated cognitive dysfunction is that HAART may be neurotoxic. Thus, observed effects, attributed to HIV, may be in part due to HAART. It is unclear whether and to what extent current medications contribute to observed brain dysfunction. We studied changes in functional connectivity and cerebral blood flow in HIV uninfected (HIV-) individuals before and after being given two common antiretroviral medications: efavirenz and ritonavir. Neither drug was associated with significant changes in functional connectivity or cerebral blood flow. Our results suggests that previous changes in functional connectivity and cerebral blood flow in HIV infected individuals receiving HAART may largely due to the virus and remaining reservoirs and less due to toxic action of these anti-retroviral medications.


Asunto(s)
Antirretrovirales/farmacología , Terapia Antirretroviral Altamente Activa/efectos adversos , Benzoxazinas/farmacología , Encéfalo/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Conectoma , Ritonavir/farmacología , Adulto , Alquinos , Antirretrovirales/administración & dosificación , Antirretrovirales/toxicidad , Benzoxazinas/administración & dosificación , Benzoxazinas/toxicidad , Ciclopropanos , Femenino , Infecciones por VIH/tratamiento farmacológico , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Ritonavir/administración & dosificación , Ritonavir/toxicidad
15.
PLoS One ; 9(9): e107580, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222610

RESUMEN

The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the "CC-MLO fractal dimension plot", where a "fractal zone" and "Euclidean zones" (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Teorema de Bayes , Neoplasias de la Mama/patología , Calcinosis/patología , Femenino , Fractales , Humanos , Mamografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA