Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunol Cell Biol ; 102(5): 396-406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648862

RESUMEN

Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.


Asunto(s)
Mucosa Intestinal , Permeabilidad , Animales , Humanos , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Enfermedad Crónica , Nematospiroides dubius/inmunología , Ratones , Necator americanus , Parasitosis Intestinales/inmunología , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Intestino Delgado/parasitología , Intestino Delgado/inmunología , Femenino , Ratones Endogámicos C57BL , Masculino , Helmintiasis/inmunología , Helmintiasis/parasitología , Necatoriasis/inmunología , Proteína 2 con Dominio MARVEL/metabolismo
2.
J Nutr Biochem ; 122: 109456, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788725

RESUMEN

Diets high in fruit and vegetables are perceived to be beneficial for intestinal homeostasis, in health as well as in the context of inflammatory bowel diseases (IBDs). Recent breakthroughs in the field of immunology have highlighted the importance of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) as a critical regulator of mucosal immunity, including the intestinal trafficking of CD4+ helper T cells, an immune cell subset implicated in a wide range of homeostatic and pathogenic processes. Specifically, the AhR has been shown to directly regulate the expression of the chemoattractant receptor G Protein-Coupled Receptor 15 (GPR15) on CD4+ T cells. GPR15 is an important gut homing marker whose expression on CD4+ T cells in the peripheral circulation is elevated in patients suffering from ulcerative colitis, raising the possibility that, in this setting, the beneficial effect of a diet rich in fruits and vegetables may be mediated through the modulation of GPR15 expression. To address this, we screened physiologically-relevant polyphenol and glucosinolate metabolites for their ability to affect both AhR activity and GPR15 expression. Our complementary approach and associated findings suggest that polyphenol and glucosinolate metabolites can regulate GPR15 expression on human CD4+ T cells in an AhR-dependent manner.


Asunto(s)
Linfocitos T CD4-Positivos , Colitis Ulcerosa , Humanos , Linfocitos T CD4-Positivos/metabolismo , Glucosinolatos/farmacología , Receptores de Hidrocarburo de Aril , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos
3.
Front Immunol ; 13: 946713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016938

RESUMEN

The fortification of flour with folic acid for the prevention of neural tube defects (NTD) is currently mandated in over eighty countries worldwide, hence compelling its consumption by the greater part of the world's population. Notwithstanding its beneficial impact on rates of NTD, pervasive folic acid supplementation has invariably led to additive daily intakes reaching well beyond their original target, resulting in the circulation of unmetabolized folic acid. Associated idiopathic side-effects ranging from allergies to cancer have been suggested, albeit inconclusively. Herein, we hypothesize that their inconsistent detection and elusive etiology are linked to the in vivo generation of the immunosuppressive folic acid metabolite 6-formylpterin, which interferes with the still emerging and varied functions of Major Histocompatibility Complex-related molecule 1 (MR1)-restricted T cells. Accordingly, we predict that fortification-related adverse health outcomes can be eliminated by substituting folic acid with the bioequivalent folate vitamer 5-methyltetrahydrofolate, which does not break down into 6-formylpterin.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Defectos del Tubo Neural , Harina , Ácido Fólico/efectos adversos , Alimentos Fortificados/efectos adversos , Antígenos de Histocompatibilidad Clase I , Humanos , Antígenos de Histocompatibilidad Menor , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/prevención & control
4.
J Agric Food Chem ; 69(31): 8625-8633, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338516

RESUMEN

The ligand-activated aryl hydrocarbon receptor (AhR) is an important molecular regulator of immune function, whose activity can be modulated by dietary glucosinolate- and tryptophan-derived metabolites. In contrast, the potential use of polyphenols as dietary regulators of AhR-dependent immunity remains unclear. In this perspective, we discuss how cellular metabolism may alter the net effect of polyphenols on AhR, thus potentially reconciling some of the conflicting observations reported in the literature. We further provide a methodological roadmap, across the fields of immunology, metabolomics, and gut microbial ecology, to explore the potential effects of polyphenol-rich diets on AhR-regulated immune function in humans.


Asunto(s)
Inmunidad , Polifenoles , Receptores de Hidrocarburo de Aril , Humanos , Ligandos , Polifenoles/farmacología , Receptores de Hidrocarburo de Aril/genética , Triptófano
5.
Front Immunol ; 12: 765528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868014

RESUMEN

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.


Asunto(s)
Fibras de la Dieta/farmacología , Inmunidad Humoral/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Animales , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Femenino , Fermentación , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Humanos , Inmunogenicidad Vacunal , Gripe Humana/microbiología , Gripe Humana/prevención & control , Masculino , Ratones , Persona de Mediana Edad , Orthomyxoviridae/inmunología , Estaciones del Año , Vacunación , Adulto Joven
6.
Food Funct ; 11(7): 5782-5787, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32618294

RESUMEN

Methylglyoxal (MGO) is the main antimicrobial determinant associated with using Manuka Honey as a topical dressing. While direct mechanisms of Manuka honey MGO's antimicrobial activity have been demonstrated, such as disruption of bacterial fimbria and flagella, no interaction of Manuka honey-derived MGO with antimicrobial effector cells of the immune system, such as mucosal-associated invariant T cells (MAIT cells), has yet been reported. MAIT cells are an abundant subset of human T cells, critical for regulating a diverse range of immune functions, including antimicrobial defense mechanisms but also mucosal barrier integrity. MAIT cells become activated by recognition of an important microbial metabolite, 5-amino-6-d-ribitylaminouracil (5-A-RU), which is produced by a wide range of microbial pathogens and commensals. Recognition is afforded when 5-A-RU condenses with mammalian-cell derived MGO to form the potent MAIT cell activator, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU). Formation of 5-OP-RU and its subsequent presentation to MAIT cells by major histocompatibility (MHC)-related molecule 1 (MR1) facilitates host-pathogen and host-commensal interactions. While MGO is a metabolite naturally present in mammalian cells, it is unclear whether exogenous dietary MGO sources, such as those obtained from Manuka honey intake, can contribute to 5-OP-RU formation and enhance MAIT cell activation. In this work, we report that endogenous MGO is the rate-limiting substrate for converting microbial 5-A-RU to 5-OP-RU and that Manuka honey-derived MGO significantly enhances MAIT cell activation in vitro. Our findings posit a novel mechanism by which intake of a food item, such as Manuka honey, can potentially support immune homeostasis by enhancing MAIT cell-specific microbial sensing.


Asunto(s)
Miel , Factores Inmunológicos/farmacología , Leptospermum , Activación de Linfocitos/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/metabolismo , Piruvaldehído/farmacología , Antibacterianos/farmacología , Apiterapia , Humanos , Piruvaldehído/metabolismo , Ribitol/análogos & derivados , Ribitol/metabolismo , Uracilo/análogos & derivados , Uracilo/metabolismo
7.
Mol Nutr Food Res ; 63(18): e1900478, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31216087

RESUMEN

SCOPE: Blueberry polyphenols are thought to confer cardiovascular health benefits, but have limited bioavailability. They undergo extensive metabolism and their phenolic acid metabolites are likely to be the mediators of bioactivity. The effect of blueberry-derived phenolic acids on one aspect of inflammation, monocyte adhesion to vascular endothelial cells, is investigated. METHODS AND RESULTS: The major blueberry-derived phenolic acids in human plasma are identified and quantified. Three test mixtures representing compounds present at 0-4 h (Early), 4-24 h (Late), or 0-24 h (Whole) are used to investigate the effect on adhesion of monocytes to tumor necrosis factor alpha (TNFα)-activated endothelial cells. The Late mixture reduces monocyte adhesion, but there is no effect of the Early or Whole mixtures. Exclusion of syringic acid from each mixture results in inhibition of monocyte adhesion. Exposure to the phenolic acid mixtures has no effect on the endothelial surface expression of adhesion molecules intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or E-selectin, suggesting that other molecular mechanisms are responsible for the observed effect. CONCLUSION: This study shows that physiological concentrations of blueberry polyphenol metabolites can help maintain cardiovascular health by regulating monocyte adhesion to the vascular endothelium.


Asunto(s)
Arándanos Azules (Planta)/química , Hidroxibenzoatos/sangre , Hidroxibenzoatos/farmacología , Monocitos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Citometría de Flujo , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidroxibenzoatos/aislamiento & purificación , Monocitos/citología , Factor de Necrosis Tumoral alfa/farmacología
8.
Mol Nutr Food Res ; 62(5)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29278300

RESUMEN

SCOPE: Blueberry consumption is believed to confer a cardiovascular health advantage, but the active compounds and effects require characterization. This study aims to identify the polyphenol metabolites in plasma after blueberry juice intake and determine their bioactivity on endothelial cells. METHODS AND RESULTS: Three healthy individuals are recruited to obtain profiles of bioavailable plasma polyphenol metabolites following intake of blueberry juice. Of 33 phenolic compounds screened, 12 aglycone phenolic acids are detected and their maximum plasma concentrations and circulation time determined. Using this information, the effect of three physiologically relevant mixtures of blueberry-derived phenolic acids is investigated for their ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2)-nuclear translocation and downstream gene expression in human endothelial cells. Pretreatment with the phenolic acids for 18 h results in a significant upregulation of the Nrf2-regulated antioxidant response proteins heme oxygenase 1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM), following 6 h exposure to 2.5 µm H2 O2 . CONCLUSION: Physiologically relevant concentrations of blueberry-derived aglycone phenolic acids can induce Nrf2-regulated antioxidant response proteins in vascular endothelial cells in response to low µm concentrations of H2 O2 . Our results represent an advance over previous studies that have used single compounds or high concentrations in cell-based investigations.


Asunto(s)
Antioxidantes/farmacología , Arándanos Azules (Planta)/química , Células Endoteliales/efectos de los fármacos , Hidroxibenzoatos/farmacología , Factor 2 Relacionado con NF-E2/fisiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Jugos de Frutas y Vegetales/análisis , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/fisiología , Humanos , Factor 2 Relacionado con NF-E2/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA