Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 617(7961): 499-506, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198311

RESUMEN

Phase segregation is ubiquitously observed in immiscible mixtures, such as oil and water, in which the mixing entropy is overcome by the segregation enthalpy1-3. In monodispersed colloidal systems, however, the colloidal-colloidal interactions are usually non-specific and short-ranged, which leads to negligible segregation enthalpy4. The recently developed photoactive colloidal particles show long-range phoretic interactions, which can be readily tuned with incident light, suggesting an ideal model for studying phase behaviour and structure evolution kinetics5,6. In this work, we design a simple spectral selective active colloidal system, in which TiO2 colloidal species were coded with spectral distinctive dyes to form a photochromic colloidal swarm. In this system, the particle-particle interactions can be programmed by combining incident light with various wavelengths and intensities to enable controllable colloidal gelation and segregation. Furthermore, by mixing the cyan, magenta and yellow colloids, a dynamic photochromic colloidal swarm is formulated. On illumination of coloured light, the colloidal swarm adapts the appearance of incident light due to layered phase segregation, presenting a facile approach towards coloured electronic paper and self-powered optical camouflage.

2.
J Am Chem Soc ; 146(26): 17931-17939, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38877992

RESUMEN

Complex micro/nanorobots may be constructed by integrating several independent, controlled nanomotors for high degrees of freedom of maneuvering and manipulation. However, designing nanomotors with distinctive responses to the same global stimuli is challenging due to the nanomotors' simple structure and limited material composition. In this work, we demonstrate that a nanomotor can be designed with the same principles of electronic circuits, where the motion of semiconductor particles can be controlled with synchronized electric and optical signals. This technique relies on transient bipolar photoelectrochemistry in semiconductor microparticles, where the reaction site selectivity is realized by modulating the light pulse in the time domain. Due to the microparticles' intrinsic resistance and surface capacitance, the nanomotors can be designed as an electronic circuit, enabling distinctive responses to the global electric/optical field and achieving the desired movement or deflection/rotation. This work gives new insight into the manipulation technique for independent and untethered nanomotor control. Ultimately, it exploits the potential for particle sorting based on geometry in time and frequency domain modulation.

3.
Angew Chem Int Ed Engl ; 63(9): e202313885, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38059754

RESUMEN

Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.

4.
Angew Chem Int Ed Engl ; 63(28): e202405895, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660927

RESUMEN

Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks. Inspired by silicon Metal-Insulator-Semiconductor (MIS) solar cell principles, we design a new type of optomagnetic hybrid micromotors (OHMs). These OHMs have been skillfully optimized with integrated magnetic constituent, resulting in efficient light propulsion, precise magnetic navigation, and the potential for controlled assembly. One of the key features of the OHMs is their ability to exhibit diverse motion modes influenced by fracture surfaces and interactions with the environment, streamlining cargo conveyance along "micro expressway"-the predesigned microchannels. Further enhancing their versatility, a template-guided assembly strategy facilitates the assembly of these micromotors into functional microrobots, encompassing various configurations such as "V-shaped", "N-shaped", and 3D structured microrobots. The heightened capabilities of these microrobots, underscore the innovative potential inherent in hybrid micromotor design and assembly, which provides a foundational platform for the realization of multi-component microrobots. Our work moves a step toward forthcoming microrobotic entities boasting advanced functionalities.

5.
J Am Chem Soc ; 145(36): 19945-19952, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37641545

RESUMEN

Thermophoretic micro/nanomotors (MNMs) generate self-propulsion without a chemical reaction. Intrinsically, this promises excellent biocompatibility and is thus suitable for biomedical applications. However, their propulsion efficiency is severely limited due to the poor understanding of the thermophoretic process, which dominates the conversion from thermal energy into mechanical movement. We here developed a series of self-thermophoresis light-powered MNMs with variable surface coatings and discovered obvious self-thermophoresis propulsion enhancement of the polymeric layer. An intrinsically negative self-thermophoretic movement is also observed for the first time in the MNM system. We propose that enthalpic contributions from polymer-solvent interactions should play a fundamental role in the self-thermophoretic MNMs. Quantitative microcalorimetry and molecular dynamics simulations are performed to support our hypothesis. The polymer solvation enthalpy and coating thickness influences on self-thermophoresis are investigated, further highlighting the essential enthalpy contributions to thermophoresis. Our work indicates that surface grafting would be important in designing high-efficiency thermally driven nanorobotic systems for biomedical applications.

6.
J Am Chem Soc ; 144(4): 1634-1646, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014789

RESUMEN

The rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors. Specifically, silica nanoparticles are initially formed, and the resin nanoparticles are subsequently formed on one side of the silica nanoparticles, followed by the co-assembly of silica and resin on the other side of the silica nanoparticles. The APHC nanoparticles are finally obtained via high-temperature carbonization of RSH nanoparticles and elimination of silica. The erratic asymmetrical, hierarchical porous and hollow structure and excellent photothermal performance under 980 nm near-infrared (NIR) light endow the APHC nanoparticles with the ability to serve as fuel-free nanomotors with NIR-light-driven propulsion. Upon illumination by NIR light, the photothermal effect of the APHC shell causes both self-thermophoresis and jet driving forces, which propel the APHC nanomotor. Furthermore, with the assistance of phase change materials, such APHC nanoparticles can be employed as smart vehicles that can achieve on-demand release of drugs with a 980 nm NIR laser. As a proof of concept, we apply this APHC-based therapeutic system in cancer treatment, which shows improved anticancer performance due to the synergy of photothermal therapy and chemotherapy. In brief, this kinetics-controlled approach may put forward new insight into the design and synthesis of functional materials with unique structures, properties, and applications by adjusting the assembly rates of multiple precursors in a reaction system.

7.
Angew Chem Int Ed Engl ; 61(12): e202200240, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35085410

RESUMEN

Hollow nanoparticles featuring tunable structures with spatial and chemical specificity are of fundamental interest. However, it remains a significant challenge to design and synthesize asymmetric nanoparticles with controllable topological hollow architecture. Here, a versatile kinetics-regulated cooperative polymerization induced interfacial selective superassembly strategy is demonstrated to construct a series of asymmetric hollow porous composites (AHPCs) with tunable diameters, architectures and components. The size and number of patches on Janus nanoparticles can be precisely manipulated by the precursor and catalyst content. Notably, AHPCs exhibit excellent photothermal conversion performance under the irradiation of a near infrared (NIR) laser. Thus, AHPCs are utilized as NIR light-triggered nanovehicles and cargos can be controllably released. In brief, this versatile superassembly approach offers a streamlined and powerful toolset to design diverse asymmetric hollow porous composites.

8.
J Am Chem Soc ; 143(31): 12154-12164, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339185

RESUMEN

A popular principle in designing chemical micromachines is to take advantage of asymmetric chemical reactions such as the catalytic decomposition of H2O2. Contrary to intuition, we use Janus micromotors half-coated with platinum (Pt) or catalase as an example to show that this ingredient is not sufficient in powering a micromotor into self-propulsion. In particular, by annealing a thin Pt film on a SiO2 microsphere, the resulting microsphere half-decorated with discrete Pt nanoparticles swims ∼80% more slowly than its unannealed counterpart in H2O2, even though they both catalytically produce comparable amounts of oxygen. Similarly, SiO2 microspheres half-functionalized with the enzyme catalase show negligible self-propulsion despite high catalytic activity toward decomposing H2O2. In addition to highlighting how surface morphology of a catalytic cap enables/disables a chemical micromotor, this study offers a refreshed perspective in understanding how chemistry powers nano- and microscopic objects (or not): our results are consistent with a self-electrophoresis mechanism that emphasizes the electrochemical decomposition of H2O2 over nonelectrochemical pathways. More broadly, our finding is a critical piece of the puzzle in understanding and designing nano- and micromachines, in developing capable model systems of active colloids, and in relating enzymes to active matter.

9.
Small ; 17(13): e2100141, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33690995

RESUMEN

Salinity gradient energy existing in seawater and river water is a sustainable and environmentally energy resource that has drawn significant attention of researchers in the background of energy crisis. Nanochannel membrane with a unique nano-confinement effect has been widely applied to harvest the salinity gradient energy. Here, Janus porous heterochannels constructed from 2D graphene oxide modified with polyamide (PA-GO) and oxide array (anodic aluminum oxide, AAO) are prepared through an interfacial super-assembly method, which can achieve oriented ion transportation. Compared with traditional nanochannels, the PA-GO/AAO heterochannels with asymmetric charge distribution and T-mode geometrical nanochannel structure shows directional ionic rectification features and outstanding cation selectivity. The resulting heterochannel membrane can achieve a high-power density of up to 3.73 W m-2 between artificial seawater and river water. Furthermore, high energy conversion efficiency of 30.3% even in high salinity gradient can be obtained. These achievable results indicate that the PA-GO/AAO heterochannels has significant potential application in salinity gradient energy harvesting.

10.
Langmuir ; 37(19): 5916-5922, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33909431

RESUMEN

High-performance formaldehyde sensors play an important role in air quality assessment. Herein, a self-assembled monolayer (SAM) sensor for trace formaldehyde (FA) is fabricated based on the fluorescence enhancement of oxidized thiophene derivatives. In the primary SAM molecules, the functional backbone trithiophene (3T) links to the anchor through an n-propyl group. The anchor with an active Si-Cl bond can form a covalent bond with the SiO2 substrate by solution incubation, which ensures good stability against organic solvents and high sensitivity via monolayer structures. With the alkyl chain's leading, a dense 3T SAM can be obtained on SiO2. Upon exposure to UV light in the presence of oxygen, 3T can be oxidized into a nonfluorescent but coordination-active product with abundant carbonyl groups, which can be doped with FA and induce a blueshifted fluorescence. With this mechanism, we proposed an SAM-based FA sensor by detecting the enhancement of the blueshifted fluorescence. Reliable reversibility, selectivity, stability, and detection limit lower than 1 ppm are achieved in this system. The work provides an experimental basis for developing a cheap, efficient, and flexible sensor for trace FA detection.

11.
Macromol Rapid Commun ; 42(23): e2100551, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34610177

RESUMEN

This work has prepared polymeric self-assembled monolayer (SAM) sensors for the detection of trace volatile nitroaromatic compound (NAC) explosives by fluorescence quenching. A typical aggregation-induced emission (AIE) luminogen 1,1,2,2-tetraphenylethene (TPE) polymerizes into PTPE to increase the fluorescence intensity in the SAMs, and the phosphoric acid acts as the anchor group to form stable covalent bonds with the Al2 O3 substrate. This design takes advantage of the high sensitivity and good stability of SAMs, and high fluorescence intensity, and "wire effect" of the conjugated polymers. The polymeric SAM sensors are prepared on the Al2 O3 silicon wafer and testing paper. Both of them show good response speed, reversibility, selectivity, and sensitivity. The detection limits down to 0.07, 0.35, and 4.11 ppm for TNT, DNB, and NB, respectively, are achieved on the inorganic testing paper. Furthermore, due to the higher fluorescence intensity by interlacing and overlapping of fibers, the detection of the paper can be distinguished by naked eyes even with a low-power handheld UV lamp, which provides an experimental basis for the development of cheap and easy trace NAC explosive sensors.


Asunto(s)
Sustancias Explosivas , Fluorescencia , Polímeros
12.
Angew Chem Int Ed Engl ; 60(50): 26167-26176, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34605141

RESUMEN

Nanofluidic devices have been widely used for diode-like ion transport and salinity gradients energy conversion. Emerging reverse electrodialysis (RED) nanofluidic systems based on nanochannel membrane display great superiority in salinity gradient energy harvesting. However, the imbalance between permeability and selectivity limits their practical application. Here, a new mesoporous carbon-silica/anodized aluminum (MCS/AAO) nanofluidic device with enhanced permselectivity for temperature- and pH-regulated energy generation was obtained by interfacial super-assembly method. A maximum power density of 5.04 W m-2 is achieved, and a higher performance can be obtained by regulating temperature and pH. Theoretical calculations are further implemented to reveal the mechanism for ion rectification, ion selectivity and energy conversion. Results show that the MCS/AAO hybrid membrane has great superiority in diode-like ion transport, temperature- and pH-regulated salinity gradient energy conversion.

13.
Acc Chem Res ; 51(9): 1957-1965, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30179455

RESUMEN

A micro/nanomotor (MNM), as miniaturized machinery, can potentially bridge the application gap between the traditional macroscale motor and the molecular motor to manipulate materials at the cellular scale. The fascinating biomedical potential application for these tiny robots has been long envisioned by science fiction, such as "Fantastic Voyage", where complicated surgery can be performed at single cell precision without any surgical incision. However, to enter the highly conservative biomedical and healthcare industry in practice, the MNM must provide unique advantages over existing technology without introducing additional health risk, which has not been fully materialized. As an emerging approach, light-driven micro/nanomotors (LMNMs) have demonstrated several unique advantages over other MNMs, which will be addressed in this Account. As a control signal, light promises additional degrees of freedom to manipulate MNMs by modulating the light intensity, frequency, polarization, and propagation direction with spatial and temporal precision, which enables excellent controllability and programmability of LMNMs. Additionally, the fruitful knowledge and catalysts from the well-studied photocatalysis can be readily transferred to LMNMs for photoelectrochemical reactions, which provides a rich materials inventory for the development of advanced LMNM systems. A model LMNM in general can be regarded as a miniaturized solar cell combined with electrokinetic propulsion parts, where electric current is provided by the photovoltaic effect and then converted to propulsion thrust through a variety of electrokinetic mechanisms. It can be envisioned that the electric current may be further regulated with the onboard electronic circuit for advanced logic-controlled nanorobots. Finally, because incident photons instead of active chemicals provide the energy for LMNM propulsion, the highly active but toxic chemical fuels can be avoided, which suggested their better biocompatibility. It is essential to emphasize that all of these promises rely on the in-depth understanding of the photoelectrochemical reaction as well as the physics of electrokinetic phenomena, which requires further investigations. As a persistent endeavor, the biomedical application is the most attractive but challenging target for MNMs. Currently, most of the MNMs are demonstrated with in vitro conditions largely deviating from the biological environment, and nontrivial in vivo studies and cytotoxicity experiments are rarely reported. As merits of MNMs, the efficiency, biocompatibility, ion tolerance, and controllability critically determine the future success of MNMs. In this Account, existing and prospective solutions in these aspects are systemically discussed for light-propelled MNMs. We believe that, with a better understanding of the fundamental photoelectrochemical and electrokinetic processes, the development of motor design strategies, and improved fabrication methods, the promised practical biomedical application, such as early disease diagnosis, interventional therapy, targeted therapy, and microsurgery, could be realized in the near future.


Asunto(s)
Sistemas Microelectromecánicos/instrumentación , Microtecnología/instrumentación , Nanoestructuras/química , Nanotecnología/instrumentación , Robótica/instrumentación , Catálisis , Electricidad , Diseño de Equipo , Luz , Sistemas Microelectromecánicos/métodos , Microtecnología/métodos , Movimiento (Física) , Nanoestructuras/efectos de la radiación , Nanotecnología/métodos , Oxidación-Reducción , Robótica/métodos
14.
Langmuir ; 34(10): 3289-3295, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29436833

RESUMEN

Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.

15.
Small ; 12(22): 3021-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27027390

RESUMEN

A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.

16.
Nano Lett ; 13(6): 2989-92, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23647159

RESUMEN

Artificial photosynthesis, the biomimetic approach to converting sunlight's energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

17.
Adv Mater ; : e2402482, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38940072

RESUMEN

Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.

18.
Adv Mater ; 36(8): e2305632, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805826

RESUMEN

Optically controlled neuromodulation is a promising approach for basic research of neural circuits and the clinical treatment of neurological diseases. However, developing a non-invasive and well-controllable system to deliver accurate and effective neural stimulation is challenging. Micro/nanorobots have shown great potential in various biomedical applications because of their precise controllability. Here, a magnetically-manipulated optoelectronic hybrid microrobot (MOHR) is presented for optically targeted non-genetic neuromodulation. By integrating the magnetic component into the metal-insulator-semiconductor junction design, the MOHR has excellent magnetic controllability and optoelectronic properties. The MOHR displays a variety of magnetic manipulation modes that enables precise and efficient navigation in different biofluids. Furthermore, the MOHR could achieve precision neuromodulation at the single-cell level because of its accurate targeting ability. This neuromodulation is achieved by the MOHR's photoelectric response to visible light irradiation, which enhances the excitability of the targeted cells. Finally, it is shown that the well-controllable MOHRs effectively restore neuronal activity in neurons damaged by ß-amyloid, a pathogenic agent of Alzheimer's disease. By coupling precise controllability with efficient optoelectronic properties, the hybrid microrobot system is a promising strategy for targeted on-demand optical neuromodulation.


Asunto(s)
Luz , Magnetismo
19.
ACS Nano ; 18(5): 4443-4455, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38193813

RESUMEN

The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.


Asunto(s)
Exosomas , Función Ventricular Izquierda , Animales , Ratones , Humanos , Volumen Sistólico , Isquemia , Reperfusión
20.
Artículo en Inglés | MEDLINE | ID: mdl-38661542

RESUMEN

In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 µm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA