Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol ; 32(2): 550-568, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26990902

RESUMEN

Triptolide, a traditional Chinese medicine, obtained from Tripterygium wilfordii Hook F, has anti-inflammatory, antiproliferative, and proapoptotic properties. We investigated the potential efficacy of triptolide on murine leukemia by measuring the triptolide-induced cytotoxicity in murine leukemia WEHI-3 cells in vitro. Results indicated that triptolide induced cell morphological changes and induced cytotoxic effects through G0/G1 phase arrest, induction of apoptosis. Flow cytometric assays showed that triptolide increased the production of reactive oxygen species, Ca2+ release and mitochondrial membrane potential (ΔΨm ), and activations of caspase-8, -9, and -3. Triptolide increased protein levels of Fas, Fas-L, Bax, cytochrome c, caspase-9, Endo G, Apaf-1, PARP, caspase-3 but reduced levels of AIF, ATF6α, ATF6ß, and GRP78 in WEHI-3 cells. Triptolide stimulated autophagy based on an increase in acidic vacuoles, monodansylcadaverine staining for LC-3 expression and increased protein levels of ATG 5, ATG 7, and ATG 12. The in vitro data suggest that the cytotoxic effects of triptolide may involve cross-talk between cross-interaction of apoptosis and autophagy. Normal BALB/c mice were i.p. injected with WEHI-3 cells to generate leukemia and were oral treatment with triptolide at 0, 0.02, and 0.2 mg/kg for 3 weeks then animals were weighted and blood, liver, spleen samples were collected. Results indicated that triptolide did not significantly affect the weights of animal body, spleen and liver of leukemia mice, however, triptolide significant increased the cell populations of T cells (CD3), B cells (CD19), monocytes (CD11b), and macrophage (Mac-3). Furthermore, triptolide increased the phagocytosis of macrophage from peripheral blood mononuclear cells (PBMC) but not effects from peritoneum. Triptolide promoted T and B cell proliferation at 0.02 and 0.2 mg/kg treatment when cells were pretreated with Con A and LPS stimulation, respectively; however, triptolide did not significant affect NK cell activities in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 550-568, 2017.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Diterpenos/toxicidad , Fenantrenos/toxicidad , Animales , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocromos c/metabolismo , Daño del ADN/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Compuestos Epoxi/toxicidad , Leucemia/metabolismo , Leucemia/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Medicina Tradicional China , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Trasplante Homólogo
2.
Environ Toxicol ; 32(3): 723-738, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27113412

RESUMEN

Cantharidin (CTD), a potential anticancer agent of Traditional Chinese Medicine has cytotxic effects in different human cancer cell lines. The cytotoxic effects of CTD on A431 human skin cancer (epidermoid carcinoma) cells in vitro and in A431 cell xenograft mouse model were examined. In vitro, A431 human skin cell were treated with CTD for 24 and 48 h. Cell phase distribution, ROS production, Ca2+ release, Caspase activity and the level of apoptosis associated proteins were measured. In vivo, A431 cell xenograft mouse model were examined. CTD-induced cell morphological changes and decreased percentage of viable A431 cells via G0/G1 phase arrest and induced apoptosis. CTD-induced G0/G1 phase arrest through the reduction of protein levels of cyclin E, CDK6, and cyclin D in A431 cells. CTD-induced cell apoptosis of A431 cells also was confirm by DNA gel electrophoresis showed CTD-induced DNA fragmentation. CTD reduced the mitochondrial membrane potential and stimulated release of cytochrome c, AIF and Endo G in A431 cells. Flow cytometry demonstrated that CTD increased activity of caspase-8, -9 and -3. However, when cells were pretreated with specific caspase inhibitors activity was reduced and cell viability increased. CTD increased protein levels of death receptors such as DR4, DR5, TRAIL and levels of the active form of caspase-8, -9 and -3 in A431 cells. AIF and Endo G proteins levels were also enhanced by CTD. In vivo studies showed that CTD significantly inhibited A431 cell xenograft tumors in mice. Taken together, these in vitro and in vivo results provide insight into the mechanisms of CTD on cell growth and tumor production. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 723-738, 2017.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Cantaridina/toxicidad , Animales , Antineoplásicos/uso terapéutico , Cantaridina/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclina D/metabolismo , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Trasplante Heterólogo
3.
Environ Toxicol ; 31(12): 1899-1908, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26370218

RESUMEN

Curcuminoids are the major natural phenolic compounds found in the rhizome of many Curcuma species. Curcuminoids consist of a mixture of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although numerous studies have shown that curcumin induced cell apoptosis in many human cancer cells, however, mechanisms of BDMC-inhibited cell growth and -induced apoptosis in human lung cancer cells still remain unclear. Herein, we investigated the effect of BDMC on the cell death via the cell cycle arrest and induction of apoptosis in NCI H460 human lung cancer cells. Flow cytometry assay was used to measure viable cells, cell cycle distribution, the productions of reactive oxygen species (ROS) and Ca2+ , mitochondrial membrane potential (ΔΨm ) and caspase-3, -8 and -9 activity. DNA damage and condension were assayed by Comet assay and DAPI staining, respectively. Western blotting was used to measure the changes of cell cycle and apoptosis associated protein expressions. Results indicated that BDMC significantly induced cell death through induced S phase arrest and induced apoptosis. Moreover, DMC induced DNA damage and condension, increased ROS and Ca2+ productions and decreased the levels of ΔΨm and promoted activities caspase-3, -8, and -9. Western blotting results showed that BDMC inhibited Cdc25A, cyclin A and E for causing S phase arrest, furthermore, promoted the expression of AIF, Endo G and PARP and the levels of Fas ligand (Fas L) and Fas were also up-regulated. Results also indicated that BDMC increased ER stress associated protein expression such as GRP78, GADD153, IRE1α, IRE1ß, ATF-6α, ATF-6ß, and caspase-4. Taken together, we suggest that BDMC induced cell apoptosis through multiple signal pathways such as extrinsic, intrinsic and ES tress pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1899-1908, 2016.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Ciclina A/metabolismo , Ciclina E/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Curcumina/farmacología , Daño del ADN , Diarilheptanoides , Chaperón BiP del Retículo Endoplásmico , Humanos , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fase S , Transducción de Señal/efectos de los fármacos , Fosfatasas cdc25/metabolismo
4.
Environ Toxicol ; 31(12): 1859-1868, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26332341

RESUMEN

Nonsmall cell lung carcinoma (NSCLC) is a devastating primary lung tumor resistant to conventional therapies. Bisdemethoxycurcumin (BDMC) is one of curcumin derivate from Turmeric and has been shown to induce NSCLC cell death. Although there is one report to show BDMC induced DNA double strand breaks, however, no available information to show BDMC induced DNA damage action with inhibited DNA repair protein in lung cancer cells in detail. In this study, we tested BDMC-induced DNA damage and condensation in NCI-H460 cells by using Comet assay and DAPI staining examinations, respectively and we found BDMC induced DNA damage and condension. Western blotting was used to examine the effects of BDMC on protein expression associated with DNA damage and repair and results indicated that BDMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DDR), O6-methylguanine-DNA methyltransferase, DNA repair proteins breast cancer 1, early onset, mediator of DNA damage checkpoint 1 but activate phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Confocal laser systems microscopy was used for examining the protein translocation and results show that BDMC increased the translocation of p-p53 and p-H2A.X (phospho Ser140) from cytosol to nuclei in NCI-H460 cells. In conclusion, BDMC induced DNA damage and condension and affect DNA repair proteins in NCI-H460 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1859-1868, 2016.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/análogos & derivados , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Diarilheptanoides , Histonas/metabolismo , Humanos , Neoplasias Pulmonares , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
5.
Nutr Cancer ; 67(2): 327-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658905

RESUMEN

Aside from the commonly known white rice lines, colored varieties also exist. These varieties have historically been used in Chinese medicine. Anthocyanins, a large group of natural polyphenols existing in a variety of daily fruits and vegetables, have been widely recognized as cancer chemopreventive agents. The primary objective of cancer treatment strategies has traditionally focused on preventing the occurrence of metastasis. In this research the antimetastatic mechanism of anthocyanins on the invasion/migration of human oral CAL 27 cells was performed using a transwell to quantify the migratory potential of CAL 27 cells and the results show that anthocyanins can inhibit the in vitro migration and invasion of CAL 27 cancer cells. In addition, the gelatin zymography assay indicated that anthocyanins inhibited the activity of matrix metalloproteinases-2 (MMP-2). Western blotting assay also demonstrated that anthocyanins inhibited the associated protein expression of migration/invasion of CAL 27 cell. Immunofluorescence staining proved that anthocyanins inhibited nuclear factor kappa B p65 (NF-κB p65) expressions. These results demonstrated that anthocyanins from a species of black rice (selected purple glutinous indica rice cultivated at Asia University) could suppress CAL 27 cell metastasis by reduction of MMP-2, MMP-9, and NF-κB p65 expression through the suppression of PI3K/Akt pathway and inhibition of NF-κB levels.


Asunto(s)
Antocianinas/farmacología , Metaloproteinasas de la Matriz/efectos de los fármacos , Neoplasias de la Boca/metabolismo , FN-kappa B/efectos de los fármacos , Oryza/química , Western Blotting , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias de la Boca/patología , FN-kappa B/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
BMC Complement Altern Med ; 15: 241, 2015 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26187498

RESUMEN

BACKGROUND: This study aimed to determine the effects of electroacupuncture stimulation at the Baihui (GV20) and Fengfu (GV16) acupoints, at frequencies of 5Hz (EA-5Hz) and 25Hz (EA-25Hz), 7 days after cerebral ischemia-reperfusion (I/R) injury, and to evaluate the possible signaling mechanisms involved in mitogen-activated protein kinase (MAPK) pathways. METHODS: Rats were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 7 days of reperfusion. EA-5Hz or EA-25Hz was applied immediately after MCAo and then once daily for 7 consecutive days. RESULTS: Results indicated that EA-5Hz and EA-25Hz both markedly attenuated cerebral infarction and neurological deficits. EA-5Hz and EA-25Hz both markedly downregulated cytosolic glial fibrillary acidic protein (GFAP), mitochondrial Bax, mitochondrial and cytosolic second mitochondrial-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with low isoelectric point (Smac/DIABLO), and cytosolic cleaved caspase-3 expression, and effectively restored cytosolic phospho-p38 MAPK (p-p38 MAPK), cytosolic cAMP response element-binding protein (CREB), mitochondrial Bcl-xL, and cytosolic X-linked inhibitor of apoptosis protein (XIAP) expression, in the ischemic cortical penumbra 7 days after reperfusion. Both EA-5Hz and EA-25Hz also significantly increased the ratios of mitochondrial Bcl-xL/Bax and Bcl-2/Bax, respectively. CONCLUSIONS: Both EA-5Hz and EA-25Hz effectively downregulate reactive astrocytosis to provide neuroprotection against cerebral infarction, most likely by activating the p38 MAPK/CREB signaling pathway. The modulating effects of EA-5Hz and EA-25Hz on Bax-mediated apoptosis are possibly due to the activation of p38 MAPK/CREB/Bcl-xL and p38 MAPK/CREB/Bcl-2 signaling pathways, respectively, and eventually contribute to the prevention of Smac/DIABLO translocation and subsequent restoration of XIAP-mediated suppression of caspase-3 in the cortical periinfarct area 7 days after reperfusion.


Asunto(s)
Apoptosis/efectos de la radiación , Electroacupuntura/métodos , Daño por Reperfusión , Transducción de Señal/efectos de la radiación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia
7.
Environ Toxicol ; 30(10): 1135-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24639390

RESUMEN

Cantharidin is one of the major compounds from mylabris and it has cytotoxic effects in many different types of human cancer cells. Previously, we found that cantharidin induced cell death through cell cycle arrest and apoptosis induction in human lung cancer NCI-H460 cells. However, cantharidin-affected DNA damage, repair, and associated protein levels in NCI-H460 cells have not been examined. In this study, we determined whether cantharidin induced DNA damage and condensation and altered levels of proteins in NCI-H460 cells in vitro. Incubation of NCI-H460 cells with 0, 2.5, 5, 10, and 15 µM of cantharidin caused a longer DNA migration smear (comet tail). Cantharidin also increased DNA condensation. These effects were dose-dependent. Cantharidin (5, 10, and 15 µM) treatment of NCI-H460 cells reduced protein levels of ataxia telangiectasia mutated (ATM), breast cancer 1, early onset (BRCA-1), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6) -methylguanine-DNA methyltransferase (MGMT), and mediator of DNA damage checkpoint protein 1 (MDC1). Protein translocation of p-p53, p-H2A.X (S140), and MDC1 from cytoplasm to nucleus was induced by cantharidin in NCI-H460 cells. Taken together, this study showed that cantharidin caused DNA damage and inhibited levels of DNA repair-associated proteins. These effects may contribute to cantharidin-induced cell death in vitro.


Asunto(s)
Cantaridina/toxicidad , Daño del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ensayo Cometa , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Microscopía Confocal
8.
Environ Toxicol ; 30(11): 1343-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24890016

RESUMEN

Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.


Asunto(s)
Compuestos Alílicos/farmacología , Anticarcinógenos/farmacología , Apoptosis/efectos de los fármacos , Leucemia Experimental/inmunología , Leucemia Experimental/prevención & control , Sulfuros/farmacología , Compuestos Alílicos/uso terapéutico , Animales , Anticarcinógenos/uso terapéutico , Antígenos de Diferenciación/inmunología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Ajo/química , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Sulfuros/uso terapéutico
9.
BMC Complement Altern Med ; 14: 92, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24606810

RESUMEN

BACKGROUND: This study was designed to evaluate the effects of electroacupuncture-like stimulation at Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) following mild cerebral ischemia-reperfusion (I/R) injury. Furthermore, we investigated whether brain-derived neurotrophic factor (BDNF)-mediated activation of extracellular signal-regulated kinase (ERK)1/2 signaling pathway is involved in the neuroprotection induced by EA at acupoints. METHODS: Rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by reperfusion for 3 d. EA at acupoints was applied 1 d postreperfusion then once daily for 2 consecutive days. RESULTS: Following the application of EA at acupoints, initiated 1 d postreperfusion, we observed significant reductions in the cerebral infarct area, neurological deficit scores, active caspase-3 protein expression, and apoptosis in the ischemic cortex after 3 d of reperfusion. We also observed markedly upregulated BDNF, phospho-Raf-1 (pRaf-1), phospho-MEK1/2 (pMEK1/2), phospho-ERK1/2 (pERK1/2), phospho-90 kDa ribosomal S6 kinase (pp90RSK), and phospho-Bad (pBad) expression, and restored neuronal nuclear antigen (NeuN) expression. Pretreatment with the MEK1/2 inhibitor U0126 abrogated the effects of EA at acupoints on cerebral infarct size, neurological deficits, active caspase-3 protein, and apoptosis in the ischemic cortex after 3 d of reperfusion. Pretreatment with U0126 also abrogated the effects of EA at acupoints on pMEK1/2, pERK1/2, pp90RSK, pBad, and NeuN expression, but did not influence BDNF and pRaf-1 expression. CONCLUSION: Overall, our study results indicated that EA at acupoints, initiated 1 d postreperfusion, upregulates BDNF expression to provide BDNF-mediated neuroprotection against caspase-3-dependent neuronal apoptosis through activation of the Raf-1/MEK1/2/ERK1/2/p90RSK/Bad signaling cascade after 3 d of reperfusion in mild MCAo.


Asunto(s)
Puntos de Acupuntura , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Electroacupuntura , Ataque Isquémico Transitorio/terapia , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ataque Isquémico Transitorio/metabolismo , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
10.
Environ Toxicol ; 29(9): 1020-31, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23239598

RESUMEN

Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U-2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell-cycle distribution, apoptotic cells in sub-G1 phase, reactive oxygen species (ROS), Ca(2+) levels, and mitochondrial membrane potential (ΔΨm ). Comet assay and 4'-6-diamidino-2-phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis-associated protein levels in U-2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G0/G1 arrest, and apoptosis in U-2 OS cells. CECF-stimulated activities of caspase-8, caspase-9, and caspase-3, ROS, and Ca(2+) production, decreased ΔΨm levels of in U-2 OS cells. CECF increased protein levels of caspase-3, caspase-9, Bax, cytochrome c, GRP78, AIF, ATF-6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell-cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U-2 OS cells via ROS-modulated caspase-dependent and -independent pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Cornus/química , Medicina Tradicional China , Extractos Vegetales/farmacología , Neoplasias Óseas/enzimología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , ADN/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Osteosarcoma/enzimología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Environ Toxicol ; 29(4): 428-39, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22431435

RESUMEN

Prostate cancer has its highest incidence and is becoming a major concern. Many studies have shown that traditional Chinese medicine exhibited antitumor responses. Quercetin, a natural polyphenolic compound, has been shown to induce apoptosis in many human cancer cell lines. Although numerous evidences show multiple possible signaling pathways of quercetin in apoptosis, there is no report to address the role of endoplasmic reticulum (ER) stress in quercetin-induced apoptosis in PC-3 cells. The purpose of this study was to investigate the effects of quercetin on the induction of the apoptotic pathway in human prostate cancer PC-3 cells. Cells were treated with quercetin for 24 and 48 h and at various doses (50-200 µM), and cell morphology and viability decreased significantly in dose-dependent manners. Flow cytometric assay indicated that quercetin at 150 µM caused G0/G1 phase arrest (31.4-49.7%) and sub-G1 phase cells (19.77%) for 36 h treatment and this effect is a time-dependent manner. Western blotting analysis indicated that quercetin induces the G0/G1 phase arrest via decreasing the levels of CDK2, cyclins E, and D proteins. Quercetin also stimulated the protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. Furthermore, PC-3 cells after incubation with quercetin for 48 h showed an apoptotic cell death and DNA damage which are confirmed by DAPI and Comet assays, leading to decrease the antiapoptotic Bcl-2 protein and level of ΔΨm , and increase the proapoptotic Bax protein and the activations of caspase-3, -8, and -9. Moreover, quercetin promoted the trafficking of AIF protein released from mitochondria to nuclei. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade through mitochondrial pathway and ER stress in PC-3 cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico , Mitocondrias/fisiología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Quercetina/farmacología , Transporte Activo de Núcleo Celular , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Fase G1/efectos de los fármacos , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal
12.
ScientificWorldJournal ; 2014: 129875, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24605047

RESUMEN

We adopt the chronic constriction injury (CCI) model to induce neuropathic pain to Spragrue-Dawley (SD) rats by ligating the right sciatic nerve of using four 4-0 chromic gut sutures and subsequently applying 2 and 15 Hz electroacupuncture (EA), respectively, to the right (ipsilateral) Zusanli (St-36) and Shangjuxu (St-37) acupoints. The results of this study are summarized as follows: (1) the differences in withdrawal latencies for the radiant heat test and total lift leg counts for the cold plate test (4°C) of the control (i.e., non-EA) and sham groups were greater than those of the 2 Hz EA (2EA) and 15 Hz EA (15EA) groups; (2) the von Frey test filament gram counts of the control and sham groups were less than those of the 2EA and 15EA groups on the 6th, 7th, 8th, 11th, 12th, and 13th day following ligation; and (3) the 2EA and 15EA groups exhibited reduced cerebral transient receptor potential vanilloid type 4 (TRPV4) expressions, although we did not observe a similar effect for cerebral TRPV1 or spinal TRPV4/TRPV1 expressions. These findings show that 2 and 15 Hz EA can reduce CCI-induced neuropathic pain, which indicates that various spinal segmental and gate effects have a crucial function in pain reduction. The relationship between EA and TRPV4/TRPV1 expression requires further study.


Asunto(s)
Electroacupuntura/métodos , Neuralgia/terapia , Manejo del Dolor/métodos , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Regulación de la Expresión Génica , Neuralgia/metabolismo , Neuralgia/patología , Ratas , Ratas Sprague-Dawley , Columna Vertebral/metabolismo , Columna Vertebral/patología , Canales Catiónicos TRPV/biosíntesis
13.
Environ Toxicol ; 28(8): 471-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21786383

RESUMEN

Propofol (2,6-diisopropylphenol) is the most extensively used general anesthetic-sedative agent and it is employed in clinical patients. It has been shown that propofol exhibits anticancer activities. However, there is no available information to address propofol-induced cytotoxic effects and affected gene expressions on murine leukemia cells. Therefore, we investigated the effects of propofol on the levels of protein and gene expression, which are associated with apoptotic death in mouse leukemia RAW 264.7 cells in vitro. Results indicated that propofol induced cell morphological changes, cytotoxicity, and induction of apoptosis in RAW 264.7 cells in vitro. Western blot analysis demonstrated that propofol promoted Fas, cytochrome c, caspase-9 and -3 active form and Bax levels, but inhibited Bcl-xl protein level which led to cell apoptosis. Furthermore, cDNA microarray assay indicated that propofol significantly enhanced 5 gene expressions (Gm4884; Gm10883; Lce1c; Lrg1; and LOC100045878) and significantly suppressed 26 gene expressions (Gm10679; Zfp617; LOC621831; LOC621831; Gm5929; Snord116; Gm3994; LOC380994; Gm5592; LOC380994; Gm4638; LOC280487; Gm4638; Tex24; A530064D06Rik; BC094916; EG668725; Gm189; Hist2h3c2; Gm8020; Snord115; Gm3079; Olfr198; Tdh; Snord115; and Olfr1249). Based on these observations, propofol-altered apoptosis-related proteins might result from induction of apoptotic gene expression and inhibition of cell growth gene expression, which finally led to apoptosis in a mouse leukemia cell line (RAW 264.7) in vitro.


Asunto(s)
Antineoplásicos/farmacología , Propofol/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatina/ultraestructura , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
14.
Environ Toxicol ; 28(9): 479-88, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21695758

RESUMEN

Diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS) are major organosulfur compounds exiting in garlic (Allium sativum). These compounds are reported to exhibit various pharmacological properties such as antibacteria, antiangiogenesis, anticancer, and anticoagulation, and they also induce cytotoxicity and induction of apoptosis in human cancer cells. Although these compounds show wide spectrum of biological activities, there are no reports to show that DAS, DADS, and DATS affected migration and invasion of human colon cancer cells, and their exact molecular mechanisms are not well investigated. Therefore, the purpose of this study was to determine whether DAS, DADS, and DATS affected the invasion and migration abilities of colo 205 human colon cancer cells. The results indicate that DAS, DADS, and DATS at 10 and 25 µM inhibited the migration and invasion of colo 205 cells in the order of DATS < DADS < DAS. DATS is the highest for inhibition of migration and invasion of colo 205 cells. DAS, DADS, and DATS induce downregulation expression of PI3K, Ras, MEKK3, MKK7, ERK1/2, JNK1/2, and p38 and then lead to the inhibition of MMP-2, -7, and -9. DAS, DADS, and DATS inhibited NF-κB and COX-2 for leading to the inhibition of cell proliferation. Taken together, these results demonstrated that application of DAS, DADS, and DATS might serve as potential antimetastatic drugs.


Asunto(s)
Compuestos Alílicos/farmacología , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Disulfuros/farmacología , Ajo/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Invasividad Neoplásica/patología , Sulfuros/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-21837247

RESUMEN

Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

16.
Artículo en Inglés | MEDLINE | ID: mdl-22919418

RESUMEN

Phenethyl isothiocyanate (PEITC), an effective anticancer and chemopreventive agent, has been reported to inhibit cancer cell growth through cell-cycle arrest and induction of apoptotic events in various human cancer cells models. However, whether PEITC inhibits human oral squamous cell carcinoma HSC-3 cell growth and its underlying mechanisms is still not well elucidated. In the present study, we evaluated the inhibitory effects of PEITC in HSC-3 cells and examined PEITC-modulated cell-cycle arrest and apoptosis. The contrast-phase and flow cytometric assays were used for examining cell morphological changes and viability, respectively. The changes of cell-cycle and apoptosis-associated protein levels were determined utilizing Western blotting in HSC-3 cells after exposure to PEITC. Our results indicated that PEITC effectively inhibited the HSC-3 cells' growth and caused apoptosis. PEITC induced G(0)/G(1) phase arrest through the effects of associated protein such as p53, p21, p17, CDK2 and cyclin E, and it triggered apoptosis through promotion of Bax and Bid expression and reduction of Bcl-2, leading to decrease the levels of mitochondrial membrane potential (ΔΨ(m)), and followed the releases of cytochrome c, AIF and Endo G then for causing apoptosis in HSC-3 cells. These results suggest that PEITC could be an antitumor compound for oral cancer therapy.

17.
Artículo en Inglés | MEDLINE | ID: mdl-22719785

RESUMEN

Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨ(m) and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways.

18.
Acta Pharmacol Sin ; 31(8): 889-99, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20644551

RESUMEN

AIM: Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) provides neuroprotection against apoptosis in a transient middle cerebral artery occlusion (MCAo) model. This study was to further investigate the anti-apoptotic effect of FA during reperfusion after cerebral ischemia. METHODS: Rats were subjected to 90 min of cerebral ischemia followed by 3 or 24 h of reperfusion after which they were sacrificed. RESULTS: Intravenous FA (100 mg/kg) administered immediately after middle cerebral artery occlusion (MCAo) or 2 h after reperfusion effectively abrogated the elevation of postsynaptic density-95 (PSD-95), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine, and cleaved caspase-3 levels as well as apoptosis in the ischemic cortex at 24 h of reperfusion. FA further inhibited Bax translocation, cytochrome c release, and p38 mitogen-activated protein (MAP) kinase phosphorylation. Moreover, FA enhanced the expression of gamma-aminobutyric acid type B receptor subunit 1 (GABA(B1)) in the ischemic cortex at 3 and 24 h of reperfusion. In addition, nitrotyrosine-positive cells colocalized with cleaved caspase-3-positive cells, and phospho-p38 MAP kinase-positive cells colocalized with nitrotyrosine- and Bax-positive cells, indicating a positive relationship among the expression of nitrotyrosine, phospho-p38 MAP kinase, Bax, and cleaved caspase-3. The mutually exclusive expression of GABA(B1) and nitrotyrosine revealed that there is a negative correlation between GABA(B1) and nitrotyrosine expression profiles. Additionally, pretreatment with saclofen, a GABA(B) receptor antagonist, abolished the neuroprotection of FA against nitric oxide (NO)-induced apoptosis. CONCLUSION: FA significantly enhances GABA(B1) receptor expression at early reperfusion and thereby provides neuroprotection against p38 MAP kinase-mediated NO-induced apoptosis at 24 h of reperfusion.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Ácidos Cumáricos/farmacología , Depuradores de Radicales Libres/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/farmacología , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/genética , Daño por Reperfusión/fisiopatología , Tirosina/análogos & derivados , Tirosina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
In Vivo ; 24(3): 287-91, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20555000

RESUMEN

Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Neoplasias de la Boca , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gynostemma , Humanos , Técnicas In Vitro , Medicina Tradicional China/métodos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Extractos Vegetales/farmacología
20.
Phytother Res ; 24(2): 163-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19449452

RESUMEN

Enhanced flavonoid consumption is closely related with a reduced cancer incidence as shown in epidemiological studies. Quercetin (3,5,7,3',4'-pentahydroxylflavone) is one of the active components of flavonoids which exist in natural plants, particularly in onions and fruits. It was reported that quercetin induced apoptosis in human cancer cell lines, including human leukemia HL-60 cells, but there is no available information as to its effects on leukemia cells in vivo. The purpose of the present studies was to focus on the in vivo effects of quercetin on leukemia WEHI-3 cells. The effects of quercetin on WEHI-3 cells injected into BALB/c mice were examined. Quercetin decreased the percentage of Mac-3 and CD11b markers, suggesting that the differentiation of the precursors of macrophages and T cells was inhibited. There was no effect on CD3 levels but increased CD19 levels. Quercetin decreased the weight of the spleen and liver compared with the olive oil treated animals. Quercetin stimulated macrophage phagocytosis of cells isolated from peritoneum. Quercetin also promoted natural killer cell activity. Based on pathological examination, an effect of quercetin was observed in the spleen of mice previously injected with WEHI-3 cells. Apparently, quercetin affects WEHI-3 cells in vivo.


Asunto(s)
Leucemia Experimental/tratamiento farmacológico , Leucemia Experimental/inmunología , Quercetina/farmacología , Animales , Biomarcadores/análisis , Células Asesinas Naturales/inmunología , Leucemia Experimental/patología , Hígado/efectos de los fármacos , Hígado/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Tamaño de los Órganos/efectos de los fármacos , Fagocitosis , Quercetina/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA