Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38392127

RESUMEN

Underwater bionic-legged robots encounter significant challenges in attitude, velocity, and positional control due to lift and drag in water current environments, making it difficult to balance operational efficiency with motion stability. This study delves into the hydrodynamic properties of a bionic crab robot's shell, drawing inspiration from the sea crab's motion postures. It further refines the robot's underwater locomotion strategy based on these insights. Initially, the research involved collecting attitude data from crabs during underwater movement through biological observation. Subsequently, hydrodynamic simulations and experimental validations of the bionic shell were conducted, examining the impact of attitude parameters on hydrodynamic performance. The findings reveal that the transverse angle predominantly influences lift and drag. Experiments in a test pool with a crab-like robot, altering transverse angles, demonstrated that increased transverse angles enhance the robot's underwater walking efficiency, stability, and overall performance.

2.
Front Neurorobot ; 16: 1081242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699950

RESUMEN

Introduction: The value approximation bias is known to lead to suboptimal policies or catastrophic overestimation bias accumulation that prevent the agent from making the right decisions between exploration and exploitation. Algorithms have been proposed to mitigate the above contradiction. However, we still lack an understanding of how the value bias impact performance and a method for efficient exploration while keeping stable updates. This study aims to clarify the effect of the value bias and improve the reinforcement learning algorithms to enhance sample efficiency. Methods: This study designs a simple episodic tabular MDP to research value underestimation and overestimation in actor-critic methods. This study proposes a unified framework called Realistic Actor-Critic (RAC), which employs Universal Value Function Approximators (UVFA) to simultaneously learn policies with different value confidence-bound with the same neural network, each with a different under overestimation trade-off. Results: This study highlights that agents could over-explore low-value states due to inflexible under-overestimation trade-off in the fixed hyperparameters setting, which is a particular form of the exploration-exploitation dilemma. And RAC performs directed exploration without over-exploration using the upper bounds while still avoiding overestimation using the lower bounds. Through carefully designed experiments, this study empirically verifies that RAC achieves 10x sample efficiency and 25% performance improvement compared to Soft Actor-Critic in the most challenging Humanoid environment. All the source codes are available at https://github.com/ihuhuhu/RAC. Discussion: This research not only provides valuable insights for research on the exploration-exploitation trade-off by studying the frequency of policies access to low-value states under different value confidence-bounds guidance, but also proposes a new unified framework that can be combined with current actor-critic methods to improve sample efficiency in the continuous control domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA