Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Virol ; 92(11): 2573-2581, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32458459

RESUMEN

This retrospective study was designed to explore whether neutrophil to lymphocyte ratio (NLR) is a prognostic factor in patients with coronavirus disease 2019 (COVID-19). A cohort of patients with COVID-19 admitted to the Tongren Hospital of Wuhan University from 11 January 2020 to 3 March 2020 was retrospectively analyzed. Patients with hematologic malignancy were excluded. The NLR was calculated by dividing the neutrophil count by the lymphocyte count. NLR values were measured at the time of admission. The primary outcome was all-cause in-hospital mortality. A multivariate logistic analysis was performed. A total of 1004 patients with COVID-19 were included in this study. The mortality rate was 4.0% (40 cases). The median age of nonsurvivors (68 years) was significantly older than survivors (62 years). Male sex was more predominant in nonsurvival group (27; 67.5%) than in the survival group (466; 48.3%). NLR value of nonsurvival group (median: 49.06; interquartile range [IQR]: 25.71-69.70) was higher than that of survival group (median: 4.11; IQR: 2.44-8.12; P < .001). In multivariate logistic regression analysis, after adjusting for confounding factors, NLR more than 11.75 was significantly correlated with all-cause in-hospital mortality (odds ratio = 44.351; 95% confidence interval = 4.627-425.088). These results suggest that the NLR at hospital admission is associated with in-hospital mortality among patients with COVID-19. Therefore, the NLR appears to be a significant prognostic biomarker of outcomes in critically ill patients with COVID-19. However, further investigation is needed to validate this relationship with data collected prospectively.


Asunto(s)
COVID-19/diagnóstico , Mortalidad Hospitalaria , Linfocitos/citología , Neutrófilos/citología , Factores de Edad , Anciano , Biomarcadores/sangre , COVID-19/mortalidad , Enfermedad Crítica , Estudios Transversales , Femenino , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Pronóstico , Curva ROC , Estudios Retrospectivos , Factores Sexuales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38173217

RESUMEN

OBJECTIVE: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

3.
Life Sci ; 340: 122320, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272440

RESUMEN

AIMS: Renal fibrosis is an important pathophysiological process commonly observed in patients chronic kidney disease (CKD). Angiotensin II (Ang II) is a major risk factor for CKD in part by promoting renal fibrosis. In the present study we investigated Brahma-Related Gene 1 (BRG1, encoded by Smarca4) in Ang II induced pro-fibrogenic response in renal fibroblasts. METHODS AND MATERIALS: CKD was induced by chronic angiotensin II infusion. Fibroblast- and myofibroblast-specific BRG1 deletion was achieved by crossing the BRG1f/f mice to the Col1a1-CreERT2 mice and the Postn-CreERT2 mice, respectively. KEY FINDINGS: BRG1 expression was up-regulated when fibroblasts were exposed to Ang II in vitro and in vivo. BRG1 silencing in primary renal fibroblasts blocked transition to myofibroblasts as evidenced by down-regulation of myofibroblast marker genes and reduction in cell proliferation, migration, and contraction. Consistently, deletion of BRG1 from fibroblasts or from myofibroblasts significantly attenuated renal fibrosis in mice subjected to chronic Ang II infusion. Transcriptomic analysis indicated that BRG1 primarily regulated expression of genes involved in cell migroproliferative behavior and extracellular matrix remodeling. Importantly, administration of PFI-3, a small-molecule BRG1 inhibition, markedly ameliorated Ang II induced renal fibrosis in mice. SIGNIFICANCE: Our data support a role for BRG1 in Ang II induced fibrogenic response in renal fibroblasts and suggest that targeting BRG1 could be considered as a reasonable approach for the intervention of CKD.


Asunto(s)
Angiotensina II , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Angiotensina II/metabolismo , Ensamble y Desensamble de Cromatina , Fibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Miofibroblastos/metabolismo , Fibrosis
4.
BMC Mol Cell Biol ; 24(1): 34, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041032

RESUMEN

Breast cancer is the most common malignant tumour in women. The early silk-splitting inhibitor protein 1 Emi1 is responsible for mediating ubiquitin protein degradation. The present study investigated the effects of the decreased expression of the Emil gene on the proliferation and invasion of breast cancer cells. The interference efficiency of small interfering ribonucleic acid (siRNA) was quantitatively verified using fluorescence real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting, and the effect of Emi1 gene silencing on cell vitality and invasion was determined using MTT and Transwell assays, respectively. The expression of the proliferation genes programmed cell death receptor 4 (PDCD-4), fatty acid synthase ligand (FasL), PTEN and RhoB, along with the invasive genes Maspin, TIMP3 and RECK, was measured using fluorescence RT-qPCR. In breast cancer cells, siRNA successfully reduced the expression of the Emi1 gene, and the expression level of the cell proliferation genes PDCD-4, FasL, PTEN and RhoB, along with invasive genes Maspin, TIMP3 and RECK, decreased significantly (P < 0.05). Furthermore, Emi1 gene silencing reduced the proliferation and invasion abilities of MDA-MB-231 and SUM149PT cells by reducing the expression of proliferative and invasive genes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Silenciador del Gen , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proliferación Celular/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo
5.
Life Sci ; 316: 121412, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682522

RESUMEN

AIMS: Excessive fibrogenesis in the kidney causes structural and functional damages and is considered a hallmark event in end-stage renal diseases (ESRD). During renal fibrosis, resident fibroblasts undergo profound changes to become myofibroblasts. In the present study we investigated the involvement of Slug (encoded by Snai2) in this process. MATERIALS AND METHODS: Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in mice. Cellular transcriptome was evaluated by RNA-seq. KEY FINDINGS: We report that Slug expression was up-regulated during fibroblast-myofibroblast transition (FMyT) in vivo and in vitro. Slug knockdown attenuated TGF-ß induced FMyT in primary renal fibroblasts and ameliorated renal fibrosis in mice. RNA-seq analysis revealed that Slug promoted FMyT by enabling key pro-fibrogenic transcription factors including the orphan nuclear receptor COUP-TFII. Mechanistically, Slug enhanced intracellular ROS levels by modulating the expression of redox-related genes. Elevated ROS levels in turn stimulated transcription of LDL receptor related protein 1 (Lrp1) by COUP-TFII. Importantly, both a COUP-TFII antagonist and an Lrp1 neutralization antibody mitigated renal fibrosis in mice. SIGNIFICANCE: Our data support a role for Slug in regulating FMyT and renal fibrosis.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Riñón/metabolismo , Obstrucción Ureteral/patología , Enfermedades Renales/patología , Fibrosis , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
6.
J Pain ; 24(7): 1163-1180, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36641029

RESUMEN

Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE. PERSPECTIVE: Our study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.


Asunto(s)
Dolor Crónico , Lupus Eritematoso Sistémico , Ratones , Femenino , Animales , Dolor Crónico/etiología , Dolor Crónico/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Receptor PAR-1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Glutamatos/metabolismo
7.
Exp Mol Med ; 55(5): 987-998, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121967

RESUMEN

Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast-myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-ß-induced FMyT. In conclusion, our data unveil a novel MRTF-A-Zeb1-IRF9 axis that can potentially contribute to fibroblast-myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.


Asunto(s)
Fibroblastos , Miofibroblastos , Animales , Ratones , Fibroblastos/metabolismo , Fibrosis , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Miofibroblastos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-34457029

RESUMEN

Reperfusion of blood flow during ischemic myocardium resuscitation induces ischemia/reperfusion (I/R) injury. Oxidative stress has been identified as a major cause in this process. Quercetin (QCT) is a member of the flavonoid family that exerts antioxidant effects. The aim of this study was to investigate the preventive effects of QCT on I/R injury and its underlying mechanism. To this end, H9c2 cardiomyocytes were treated with different concentrations of QCT (10, 20, and 40 µM) and subsequently subjected to oxygen-glucose deprivation/reperfusion (OGD/R) administration. The results indicated that OGD/R-induced oxidative stress, apoptosis, and mitochondrial dysfunction in H9c2 cardiomyocytes were aggravated following 40 µM QCT treatment and alleviated following the administration of 10 and 20 µM QCT prior to OGD/R treatment. In addition, OGD/R treatment inactivated ERK1/2 signaling activation. The effect was mitigated using 10 and 20 µM QCT prior to OGD/R treatment. In conclusion, these results suggested that low concentrations of QCT might alleviate I/R injury by suppressing oxidative stress and improving mitochondrial function through the regulation of ERK1/2-DRP1 signaling, providing a potential candidate for I/R injury prevention.

9.
Acta Histochem ; 123(8): 151819, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34844154

RESUMEN

OBJECTIVE: To investigate the effect and potential mechanism of quercetin on inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells. MATERIALS AND METHODS: H9C2 cells were obtained from the Shanghai Institutes for Biological Sciences, Chinese Academy of Science, and randomly divided into six groups: control, model, PVT1 overexpression (OV), quercetin, OV + quercetin, and NAC groups. The CCK-8 assay was performed to examine cell proliferation. Flow cytometry was used to examine cell apoptosis, cell membrane potential, and ROS levels. The expression of endothelial nitric oxide synthase (eNOS), malondialdehyde (MDA), and superoxide dismutase (SOD) was measured by ELISA and a Biochemical kit. Western blotting was used to determine the levels of p-DRP1 (s637), MFN2, NF-kB, p-NF-kB, IkB, and p-IkB. IL-6, IL-10, TNF-α, and IL-1ß mRNA expression was examined by RT-PCR. Electron microscopy was used to observe the structure of mitochondria in H9C2 cells. RESULTS: MDA, p-NF-κB, p-IKB, IL-6, IL-1ß, and TNF-α expression levels, and the cell apoptosis rate were significantly higher in the model group than in the control group (P < 0.05). In contrast, the cell proliferation rate and IL-10, SOD, eNOS, and ATP levels were significantly lower in the model group (P < 0.05). Moreover, MDA expression was significantly lower in the OV, quercetin, quercetin + OV, and NAC groups than in the model group (P < 0.05), while SOD, eNOS, and ATP levels were higher. The electron microscopy results showed that PVT1 overexpression or quercetin treatment could inhibit inflammation-induced mitochondrial fission and promote mitochondrial fusion. CONCLUSION: Quercetin promotes the proliferation of H9C2 cells, while inhibiting inflammation, oxidative stress, and cell apoptosis, and alleviating the structural and functional dysfunction of mitochondria. These effects are achieved by promoting PVT1 expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , ARN Largo no Codificante/biosíntesis , Línea Celular , Humanos , Inflamación/metabolismo
10.
Phytomedicine ; 82: 153447, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33444943

RESUMEN

BACKGROUND: Carya cathayensis1is a commercially cultivated plant in the Zhejiang Province, China. Its nuts exhibit properties of tonifying kidneys and relieving asthma. There have been a few pharmacological studies addressing the function of the leaves of this plant. Our previous studies on C. cathayensis leaf extract (CCE) showed a significant inhibitory effect on weight gain in mice fed a high-fat diet, particularly in female mice. HYPOTHESIS/PURPOSE: To investigate the biological and molecular mechanisms underlying the regulation of ectopic adipose tissue deposition by CCE in ovariectomized rats fed a high-fat diet. STUDY DESIGN: Female Sprague-Dawley rats were ovariectomized and treated with CCE (50, 100, and 200 mg/kg body weight, oral) or estradiol (1 mg/kg body weight, oral) for 8 weeks. METHODS: CCE was subjected to high-performance liquid chromatography to quantify major components. Body weight gain, abdominal fat coefficient, and aortic arch fat coefficient were determined; serum was collected for biochemical analysis; tissues were collected for histopathological examination, quantitative polymerase chain reaction (Q-PCR), and western blotting. RESULTS: The total flavonoid content was determined to be 57.30% in the CCE and comprised chrysin, cardamomin, pinostrobin chalcone, and pinocembrin. Compared with the model group (OVX), CCE treatment reduced body weight gain, abdominal and aortic arch fat coefficients, serum and hepatic lipid profiles, including total cholesterol (TC), total triglycerides (TG), and free fatty acids (FFA) levels; decreased lipid droplets in liver cells; decreased fat accumulation in the aortic arch blood vessel wall and increased its smoothness; decreased the diameter of abdominal fat cells; and reduced serum leptin and adiponectin levels significantly. Serum adiponectin levels significantly correlated with serum TG and hepatic TC levels. Leptin levels positively correlated with serum TG levels and negatively correlated with hepatic TG. Leptin mRNA, peroxisome proliferator-activated receptor (PPARγ) mRNA, and protein expression levels in abdominal adipose tissue were significantly down-regulated. Adiponectin mRNA levels were slightly reduced but not significantly. CONCLUSION: CCE attenuated ectopic fat deposition induced by deficient estrogen and a high-fat diet in rats; this may be associated with activated leptin sensitivity, improved leptin resistance, and regulated adiponectin levels. CCE may improve adipose function to regulate adipocyte differentiation by down-regulating PPARγ. Overall, these results suggest that CCE is a potential phytoestrogen.


Asunto(s)
Grasa Abdominal/metabolismo , Aorta Torácica/metabolismo , Carya/química , Dieta Alta en Grasa , Grasas/metabolismo , Hígado/metabolismo , Ovariectomía , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Femenino , Leptina/sangre , Ratones , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA