Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(8): 3062-3071, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718408

RESUMEN

Mutations accumulate within somatic cells and have been proposed to contribute to aging. It is unclear what level of mutation burden may be required to consistently reduce cellular lifespan. Human cancers driven by a mutator phenotype represent an intriguing model to test this hypothesis, since they carry the highest mutation burdens of any human cell. However, it remains technically challenging to measure the replicative lifespan of individual mammalian cells. Here, we modeled the consequences of cancer-related mutator phenotypes on lifespan using yeast defective for mismatch repair (MMR) and/or leading strand (Polε) or lagging strand (Polδ) DNA polymerase proofreading. Only haploid mutator cells with significant lifetime mutation accumulation (MA) exhibited shorter lifespans. Diploid strains, derived by mating haploids of various genotypes, carried variable numbers of fixed mutations and a range of mutator phenotypes. Some diploid strains with fewer than two mutations per megabase displayed a 25% decrease in lifespan, suggesting that moderate numbers of random heterozygous mutations can increase mortality rate. As mutation rates and burdens climbed, lifespan steadily eroded. Strong diploid mutator phenotypes produced a form of genetic anticipation with regard to aging, where the longer a lineage persisted, the shorter lived cells became. Using MA lines, we established a relationship between mutation burden and lifespan, as well as population doubling time. Our observations define a threshold of random mutation burden that consistently decreases cellular longevity in diploid yeast cells. Many human cancers carry comparable mutation burdens, suggesting that while cancers appear immortal, individual cancer cells may suffer diminished lifespan due to accrued mutation burden.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/genética , Longevidad/genética , Neoplasias/genética , Envejecimiento/patología , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , Genotipo , Humanos , Mutación/genética , Acumulación de Mutaciones , Tasa de Mutación , Neoplasias/patología , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
2.
Blood Adv ; 7(7): 1178-1189, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35984639

RESUMEN

Preferentially Expressed Antigen in Melanoma (PRAME), a cancer-testis antigen, provides an ideal target for immunotherapy in acute myeloid leukemia (AML). We have shown expression of PRAME in a significant subset of childhood and adult AML and lack of expression in normal hematopoiesis. Although an intracellular antigen, we developed a novel approach to target PRAME using a chimeric antigen receptor (CAR) construct encoding a targeting domain based on T-cell receptor (TCR) mimic antibodies that target the peptide-HLA complex. We used the antibody sequence from a previously designed TCR mimic (mTCR) antibody, Pr20, that recognizes the PRAME ALY peptide in complex with HLA-A∗02 and verified expression of PRAME in AML cell lines and primary AML blasts. Using the Pr20 antibody sequence, we developed CAR T cells (PRAME mTCRCAR T) to be tested against primary samples from patients with AML and AML cell lines that express the PRAME antigen in the context of HLA-A2 expression. In contrast to appropriate controls, PRAME mTCRCAR T cells demonstrate target-specific and HLA-mediated in vitro activity in OCI-AML2 and THP-1 cell lines, HLA-A2 cell lines expressing the PRAME antigen, and against primary AML patient samples. In vivo cell-derived xenograft models treated with PRAME mTCRCAR T cells demonstrated potent leukemia clearance and improved survival compared with unmodified T-cell controls. Furthermore, the cytolytic activity of PRAME mTCRCAR T cells was enhanced by treating the target cells with interferon gamma, which increases PRAME antigen expression. These results demonstrate the feasibility and efficacy of targeting PRAME with novel PRAME mTCRCAR T cells.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T , Masculino , Adulto , Humanos , Antígeno HLA-A2 , Antígenos de Neoplasias , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Péptidos/metabolismo
3.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136600

RESUMEN

The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy. We developed chimeric antigen receptor (CAR) T cells directed against one of the targets, folate receptor α (FOLR1), and demonstrated their preclinical efficacy against C/G AML using in vitro and xenograft models. FOLR1 is also expressed in renal and pulmonary epithelium, raising concerns for toxicity that must be addressed for the clinical application of this therapy. Our findings underscore the role of the endothelial niche in promoting leukemic transformation of C/G-transduced CB HSPCs. Furthermore, this work has broad implications for studies of leukemogenesis applicable to a variety of oncogenic fusion-driven pediatric leukemias, providing a robust and tractable model system to characterize the molecular mechanisms of leukemogenesis and identify biomarkers for disease diagnosis and targets for therapy.


Asunto(s)
Receptor 1 de Folato , Inmunoterapia Adoptiva , Leucemia Megacarioblástica Aguda , Proteínas de Fusión Oncogénica , Animales , Niño , Preescolar , Humanos , Lactante , Modelos Animales de Enfermedad , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Leucemia Megacarioblástica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Linfocitos T , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Geroscience ; 43(5): 2595-2609, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297314

RESUMEN

As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.


Asunto(s)
Pterocarpus , Saccharomycetales , Longevidad , Extractos Vegetales/farmacología , Saccharomyces cerevisiae
5.
Genetics ; 215(4): 959-974, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513814

RESUMEN

Mutations affecting DNA polymerase exonuclease domains or mismatch repair (MMR) generate "mutator" phenotypes capable of driving tumorigenesis. Cancers with both defects exhibit an explosive increase in mutation burden that appears to reach a threshold, consistent with selection acting against further mutation accumulation. In Saccharomyces cerevisiae haploid yeast, simultaneous defects in polymerase proofreading and MMR select for "antimutator" mutants that suppress the mutator phenotype. We report here that spontaneous polyploids also escape this "error-induced extinction" and routinely outcompete antimutators in evolved haploid cultures. We performed similar experiments to explore how diploid yeast adapt to the mutator phenotype. We first evolved cells with homozygous mutations affecting polymerase δ proofreading and MMR, which we anticipated would favor tetraploid emergence. While tetraploids arose with a low frequency, in most cultures, a single antimutator clone rose to prominence carrying biallelic mutations affecting the polymerase mutator alleles. Variation in mutation rate between subclones from the same culture suggests that there exists continued selection pressure for additional antimutator alleles. We then evolved diploid yeast modeling MMR-deficient cancers with the most common heterozygous exonuclease domain mutation (POLE-P286R). Although these cells grew robustly, within 120 generations, all subclones carried truncating or nonsynonymous mutations in the POLE-P286R homologous allele (pol2-P301R) that suppressed the mutator phenotype as much as 100-fold. Independent adaptive events in the same culture were common. Our findings suggest that analogous tumor cell populations may adapt to the threat of extinction by polyclonal mutations that neutralize the POLE mutator allele and preserve intratumoral genetic diversity for future adaptation.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma Fúngico , Poliploidía , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutación , Tasa de Mutación , Fenotipo , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA