Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(3): 350-359, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36008890

RESUMEN

Liquiritin (LQ) is an important monomer active component in flavonoids of licorice. The objective of this study was to evaluate the hepatoprotective effects of LQ in cholestatic mice. LQ (40 or 80 mg/kg) was intragastrically administered to mice once daily for 6 days, and mice were treated intragastrically with a single dosage of ANIT (75 mg/kg) on the 5th day. On the 7th day, mice were sacrificed to collect blood and livers. The mRNA and protein levels were determined by qRT-PCR and western blot assay. We also conducted systematical assessments of miRNAs expression profiles in the liver. LQ ameliorated ANIT-induced cholestatic liver injury, as evidenced by reduced serum biochemical markers and attenuated pathological changes in liver. Pretreatment of LQ reduced the increase of malondialdehyde, TNF-α, and IL-1ß induced by ANIT. Moreover, ANIT suppressed the expression of Sirt1 and FXR in liver tissue, which was weakened in the LQ pre-treatment group. LQ enhanced the nuclear expression of Nrf2, which was increased in the ANIT group. LQ also increased the mRNA expressions of bile acid transporters Bsep, Ntcp, Mrp3, and Mrp4. Furthermore, a miRNA deep sequencing analysis revealed that LQ had a global regulatory effect on the hepatic miRNA expression. Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the differentially expressed miRNAs were mainly related to metabolic pathways, endocytosis, and MAPK signaling pathway. Collectively, LQ attenuated hepatotoxicity and cholestasis by regulating the expression of Sirt1/FXR/Nrf2 and the bile acid transporters, indicating that LQ might be an effective approach for cholestatic liver diseases.


Asunto(s)
Colestasis Intrahepática , Colestasis , MicroARNs , Ratones , Animales , 1-Naftilisotiocianato/toxicidad , 1-Naftilisotiocianato/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/tratamiento farmacológico , Colestasis Intrahepática/genética , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Ácidos y Sales Biliares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo
2.
Int J Mol Sci ; 17(12)2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27898007

RESUMEN

Limb remote ischemic postconditioning (LRIP) has been confirmed to reduce the ischemia-reperfusion injury but its mechanisms are still not clear. This study clarified the mechanism of LRIP based on the nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and Myeloid differentiation factor 88 (MyD88)-Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)-P38 pathway of neutrophils. Rat middle cerebral artery occlusion (MCAO) model was used in this study. Ischemia-reperfusion injury was carried out by MCAO 1.5 h followed by 24 h reperfusion. LRIP operation was performed to the left femoral artery at 0, 1 or 3 h after reperfusion. Behavioral testing, including postural reflex test, vibrissae-elicited forelimb placing test and tail hang test, showed that LRIP operated at 0 h of reperfusion could significantly ameliorate these behavioral scores. Pathological examinations, infarct size, Myeloperoxidase (MPO) activity showed that LRIP operated at 0 h of reperfusion could significantly ameliorate the pathological scores, reduce the infarct size and MPO activity in the brain and increase the MPO activity in the left leg. By using Neutrophil counting, immunofluorescence and real-time PCR techniques, we found that LRIP operated at 0 h of reperfusion could reduce neutrophil counts in the peripheral blood and downregulate the activation of neutrophil in the peripheral blood and rat brain. Western blots revealed that MyD88, TRAF6, p38 mitogen-activated protein kinase (p38-MAPK) in neutrophils and the phosphorylation of p47phox (Ser 304 and Ser 345) in neutrophil could be downregulated by LRIP. Our study suggests that LRIP inhibits the number and activation of neutrophils in the rat brain and peripheral blood linked to down-regulating the activation of NADPH oxidase in neutrophils by MyD88/TRAF6/p38-MAPK pathway.


Asunto(s)
Extremidades/irrigación sanguínea , Poscondicionamiento Isquémico , Factor 88 de Diferenciación Mieloide/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Daño por Reperfusión/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Isquemia Encefálica/enzimología , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Neutrófilos/enzimología , Peroxidasa/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Transducción de Señal
3.
Front Oncol ; 12: 749954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155225

RESUMEN

Both crizotinib and sunitinib, novel orally-active multikinase inhibitors, exhibit antitumor activity and extend the survival of patients with a malignant tumor. However, some patients may suffer liver injury that can further limit the clinical use of these drugs, however the mechanisms underlying hepatotoxicity are still to be elucidated. Thus, our study was designed to use HepG2 cells in vitro and the ICR mice model in vivo to investigate the mechanisms of hepatotoxicity induced by crizotinib and sunitinib. Male ICR mice were treated orally with crizotinib (70 mg/kg/day) or sunitinib (7.5 mg/kg/day) for four weeks. The results demonstrated that crizotinib and sunitinib caused cytotoxicity in HepG2 cells and chronic liver injury in mice, which were associated with oxidative stress, apoptosis and/or necrosis. Crizotinib- and sunitinib-induced oxidative stress was accompanied by increasing reactive oxygen species and malondialdehyde levels and decreasing the activity of superoxide dismutase and glutathione peroxidase. Notably, the activation of the Kelch-like ECH-associated protein-1/Nuclear factor erythroid-2 related factor 2 signaling pathway was involved in the process of oxidative stress, and partially protected against oxidative stress. Crizotinib and sunitinib induced apoptosis via the mitochondrial pathway, which was characterized by decreasing Bcl2/Bax ratio to dissipate the mitochondrial membrane potential, and increasing apoptotic markers levels. Moreover, the pan-caspase inhibitor Z-VAD-FMK improved the cell viability and alleviated liver damage, which further indicated the presence of apoptosis. Taken together, this study demonstrated that crizotinib- and sunitinib-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and markedly increased levels of serum alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase.

4.
Cell Death Dis ; 13(4): 355, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429990

RESUMEN

Ferroptosis, a newly discovered iron-dependent cell death pathway, is characterized by lipid peroxidation and GSH depletion mediated by iron metabolism and is morphologically, biologically and genetically different from other programmed cell deaths. Besides, ferroptosis is usually found accompanied by inflammatory reactions. So far, it has been found participating in the development of many kinds of diseases. Macrophages are a group of immune cells that widely exist in our body for host defense and play an important role in tissue homeostasis by mediating inflammation and regulating iron, lipid and amino acid metabolisms through their unique functions like phagocytosis and efferocytosis, cytokines secretion and ROS production under different polarization. According to these common points in ferroptosis characteristics and macrophages functions, it's obvious that there must be relationship between macrophages and ferroptosis. Therefore, our review aims at revealing the interaction between macrophages and ferroptosis concerning three metabolisms and integrating the application of certain relationship in curing diseases, mostly cancer. Finally, we also provide inspirations for further studies in therapy for some diseases by targeting certain resident macrophages in distinct tissues to regulate ferroptosis. FACTS: Ferroptosis is considered as a newly discovered form characterized by its nonapoptotic and iron-dependent lipid hydroperoxide, concerning iron, lipid and amino acid metabolisms. Ferroptosis has been widely found playing a crucial part in various diseases, including hepatic diseases, neurological diseases, cancer, etc. Macrophages are phagocytic immune cells, widely existing and owning various functions such as phagocytosis and efferocytosis, cytokines secretion and ROS production. Macrophages are proved to participate in mediating metabolisms and initiating immune reactions to maintain balance in our body. Recent studies try to treat cancer by altering macrophages' polarization which damages tumor microenvironment and induces ferroptosis of cancer cells. OPEN QUESTIONS: How do macrophages regulate ferroptosis of other tissue cells specifically? Can we use the interaction between macrophages and ferroptosis in treating diseases other than cancer? What can we do to treat diseases related to ferroptosis by targeting macrophages? Is the use of the relationship between macrophages and ferroptosis more effective than other therapies when treating diseases?


Asunto(s)
Ferroptosis , Neoplasias , Aminoácidos/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Peróxidos Lipídicos/metabolismo , Macrófagos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
5.
Front Pharmacol ; 13: 1002142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386201

RESUMEN

Sunitinib is a multi-targeted tyrosine kinase inhibitor with remarkable anticancer activity, while hepatotoxicity is a potentially fatal adverse effect of its administration. The aim of this study was to elucidate the mechanism of hepatotoxicity induced by Sunitinib and the protective effect of glycyrrhetinic acid (GA). Sunitinib significantly reduced the survival of human normal hepatocytes (L02 cells), induced the increase of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH). Chloroquine (CQ) and Z-VAD-FMK were applied to clarify the cell death patterns induced by Sunitinib. Sunitinib significantly induced L02 cells death by triggering apoptosis and autophagy acted as a self-defense mechanism to promote survival. Sunitinib exposure caused excessive ROS generation which activated mitogen-activated protein kinases (MAPKs) signaling. Mechanistically, SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor) respectively blocked apoptosis and autophagy induced by Sunitinib. And inhibition of ROS by NAC pretreatment ameliorated the effect of Sunitinib on MAPKs phosphorylation. GA alleviated Sunitinib-induced cell damage by inhibiting apoptosis and autophagy. These results suggested ROS/MAPKs signaling pathway was responsible for Sunitinib-induced hepatotoxicity and GA could be a preventive strategy to alleviate liver injury caused by Sunitinib.

6.
Front Pharmacol ; 12: 620934, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33597889

RESUMEN

Considerable attention has been raised on crizotinib- and sunitinib-induced hepatotoxicity, but the underlying mechanisms need further examination. In addition, limited therapeutic strategies exist to reduce the liver damage caused by crizotinib and sunitinib. This study investigated the mechanisms of crizotinib- and sunitinib-induced hepatotoxicity and the potential mitigation through ROS and Nrf2 signaling. Firstly, crizotinib and sunitinib reduced cell viability in human liver cells (L02 cells) and triggered dramatic liver injury in mice. Subsequently, we found that crizotinib and sunitinib activated the oxidative stress response (decreased level of GPx and SOD, and increased MDA content) in vivo. Crizotinib and sunitinib also stimulated hepatocyte mitochondrial apoptosis and necrosis in L02 cells in a dose-dependent manner. In vivo studies further confirmed that crizotinib and sunitinib decreased mitochondrial membrane potential and activated apoptosis-associated proteins (cleaved-PARP, cleaved caspase3, cytochrome c, Bcl2 and Bax). Furthermore, mechanistic investigations demonstrated that crizotinib and sunitinib accumulated ROS and inhibited Nrf2 signaling, and that ROS scavenger NAC and Nrf2 agonist tBHQ alleviated the extent of cell damage and the mitochondrial apoptosis during crizotinib- and sunitinib-induced hepatotoxicity in L02 cells. Collectively, these findings indicated that NAC and tBHQ play the crucial roles in crizotinib- and sunitinib-induced mitochondrial apoptosis via the regulation of oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA