Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118835, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582423

RESUMEN

Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.


Asunto(s)
Cadmio , Plomo , Percepción de Quorum , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Cadmio/análisis , Percepción de Quorum/efectos de los fármacos , Plomo/análisis , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Aguas Residuales/microbiología , Reactores Biológicos/microbiología , Acil-Butirolactonas/metabolismo , Microbiota/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos
2.
Environ Res ; 243: 117838, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056609

RESUMEN

The utilization of municipal sludge as a seed sludge for initiating the autotrophic nitrogen removal (ANR) process presents a challenge due to the negligible abundance of anaerobic ammonia-oxidizing bacteria (AnAOB). Here, a computational fluid dynamics model was used to simulate sludge volume fraction and sludge particle velocity. A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor (HHAIPBR) was operated for 175 d to enrich AnAOB from municipal sludge, and the performance of the ANR process was investigated. The start-up period of HHAIPBR inoculated with municipal sludge required approximately 69 d. A high nitrogen removal performance, with a mean total nitrogen removal efficiency of 82.1%, was obtained for 1 month. The simulation results validated the presence of sludge circulation and revealed the distribution characteristics of dissolved oxygen inside the reactor, further supporting the promotion of sludge granulation via the high height-to-diameter ratio. Nitrosomonas (3.31%) of Proteobacteria and Candidatus Brocadia (6.56%) of Planctomycetota were dominant in the HHAIPBR. This study presents a viable approach for the industrial cultivation of anammox sludge and the rapid start-up of the partial nitritation-anammox system.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción
3.
Environ Res ; 247: 118357, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325782

RESUMEN

The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.


Asunto(s)
Estructuras Metalorgánicas , Oxitetraciclina , Contaminantes Químicos del Agua , Antibacterianos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/análisis
4.
Environ Res ; 247: 118285, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266896

RESUMEN

Traditional microbial electrochemical sensors encounter challenges due to their inherent complexity. In response to these challenges, the microbial potentiometric sensor (MPS) technology was introduced, featuring a straightforward high-impedance measurement circuit tailored for environmental monitoring. Nonetheless, the practical implementation of conventional MPS is constrained by issues such as the exposure of the reference electrode to the monitored water and the absence of methodologies to stimulate microbial metabolism. In this study, our objective was to enhance MPS performance by imbuing it with unique cathodic catalytic properties, specifically tailored for distinct application scenarios. Notably, the anodic region served as the sensing element, with both the cathodic region and reference electrode physically isolated from the analyzed water sample. In the realm of organic monitoring, the sensor without Pt/C coated in the cathodic region exhibited a faster response time (1 h) and lower detection limits (1 mg L-1 BOD, 1 mM acetic acid). Conversely, when monitoring toxic substances, the sensor with Pt/C showcased a lower detection limit (0.004% formaldehyde), while the Pt/C-free sensor demonstrated superior reusability. The sensor with Pt/C displayed a heightened anode biofilm thickness and coverage, predominantly composed of Rhodococcus. In conclusion, this study introduces simple, cost-effective, and tailorable biosensors holding substantial promise for water quality monitoring.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Electrodos , Monitoreo del Ambiente/métodos , Técnicas Biosensibles/métodos , Calidad del Agua
5.
Ecotoxicol Environ Saf ; 189: 109914, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761551

RESUMEN

Recently, a large quantity of carbon nanotubes (CNTs) enters the environment due to the increasing production and applications. More and more researches are focused on the fate and possible ecological risks of CNTs. Some literatures summarized the effects of CNTs on the chemical behavior and fate of pollutants. However, little reviewed the effects of CNTs on the biodegradation of pollutants. In general, the effects of CNTs on the biodegradation of pollutants and the related mechanisms were summarized in this review. CNTs have positive or negative effects on the biodegradation of contaminants by affecting the functional microorganisms, enzymes and the bioavailability of pollutants. CNTs may affect the microbial growth, activity, biomass, community composition, diversity and the activity of enzymes. The decrease of the bioavailability of pollutants due to the sorption on CNTs also causes the reduction of the biodegradation of contaminants. In addition, the roles of CNTs are controlled by multiple mechanisms, which are divided into three aspects i.e., properties of CNTs, environment condition, and microorganisms themself. The better understanding of the fate of CNTs and their impacts on the biochemical process in the environment is conducive to determine the release of CNTs into the environment.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Nanotubos de Carbono , Biomasa
6.
Chem Soc Rev ; 48(2): 488-516, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30565610

RESUMEN

As a newly emerging class of porous materials, covalent organic frameworks (COFs) have attracted much attention due to their intriguing structural merits (e.g., total organic backbone, tunable porosity and predictable structure). However, the insoluble and unprocessable features of bulk COF powder limit their applications. To overcome these limitations, considerable efforts have been devoted to exploring the fabrication of COF thin films with controllable architectures, which open the door for their novel applications. In this critical review, we aim to provide the recent advances in the fabrication of COF thin films not only supported on substrates but also as free-standing nanosheets via both bottom-up and top-down strategies. The bottom-up strategy involves solvothermal synthesis, interfacial polymerization, room temperature vapor-assisted conversion, and synthesis under continuous flow conditions; whereas, the top-down strategy involves solvent-assisted exfoliation, self-exfoliation, mechanical delamination, and chemical exfoliation. In addition, the applications of COF thin films including energy storage, semiconductor devices, membrane-separation, sensors, and drug delivery are summarized. Finally, to accelerate further research, a personal perspective covering their synthetic strategies, mechanisms and applications is presented.

7.
Crit Rev Biotechnol ; 39(5): 746-757, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30955366

RESUMEN

The objective of this study is to summarize the effects of surfactants on anaerobic digestion (AD) of waste activated sludge (WAS). The increasing amount of WAS has caused serious environmental problems. Anaerobic digestion, as the main treatment for WAS containing three stages (i.e. hydrolysis, acidogenesis, and methanogenesis), has been widely investigated. Surfactant addition has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic substance, can enhance the efficiency of hydrolysis by separating large sludge and releasing the encapsulated hydrolase, providing more substance for subsequent acidogenesis. Afterwards, the short chain fatty acids (SCFAs), as the major product, have been produced. Previous investigations revealed that surfactant could affect the transformation of SCFA. They changed the types of acidification products by promoting changes in microbial activity and in the ratio of carbon to nitrogen (C/N), especially the ratio of acetic and propionic acid, which were applied for either the removal of nutrient or the production of polyhydroxyalkanoate (PHA). In addition, the activity of microorganisms can be affected by surfactant, which mainly leads to the activity changes of methanogens. Besides, the solubilization of surfactant will promote the solubility of contaminants in sludge, such as organic contaminants and heavy metals, by increasing the bioavailability or desorbing of the sludge.


Asunto(s)
Ácidos Grasos/metabolismo , Metano/metabolismo , Aguas del Alcantarillado , Tensoactivos/farmacología , Eliminación de Residuos Líquidos/métodos , Anaerobiosis/efectos de los fármacos , Contaminación del Agua
8.
Environ Sci Technol ; 53(5): 2670-2678, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30742417

RESUMEN

High levels of zinc ion (Zn2+) in environmental scenarios have long been considered to be harmful, and this study was experimentally and theoretically performed to explore the feasibility of electro-assisted adsorption of Zn2+ on activated carbon cloth from aqueous solutions in batch-flow mode. The characteristics of carbon cloth were systematically evaluated using cyclic voltammetry and various surface characterization techniques. Effects of operating parameters, including charging voltage, feed Zn2+ concentration, solution volume, and flow rate, on the dynamic removal process of Zn2+ were examined. Meanwhile, a theoretical model was developed to quantitatively describe the electro-assisted adsorption of Zn2+, and an excellent agreement between the modeling results and the experimental data was observed. The Zn2+ removal mechanisms involve both nonelectrostatic interactions (physi- or chemisorption) and electrostatic interactions. Experimental and theoretical results demonstrated a significant enhancement of Zn2+ adsorption capacity on the carbon electrodes under the electro-assistance. Moreover, the carbon electrodes exhibited good regeneration performance achieved via a simple short-circuiting method and provided good reproducibility over consecutive runs for the removal of Zn2+. The validated model could be applied to predict the effects of important parameters that are difficult to be experimentally manipulated, and is expected to play an important role in establishing the electro-assisted adsorption as a viable treatment technology for zinc wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Zinc , Adsorción , Carbono , Concentración de Iones de Hidrógeno , Reproducibilidad de los Resultados
9.
Environ Sci Technol ; 53(23): 13878-13887, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31697480

RESUMEN

The good performance of base metal catalysts for the electrooxidation of organic pollutants has attracted great attention. However, base metal phosphides for electrooxidation are seldom studied owing to the sluggish water adsorption and dissociation dynamics, which will hinder the production of the sorbed hydroxyl radicals (M(•OH)) and thus inhibit the electrooxidation of organic pollutants. Herein, we proposed a universal strategy to improve the electrooxidation capability of metal phosphides by modulating the surface electron densities. The electron interactions between cobalt (Co) and phosphorus (P) are modulated after iron doping, resulting in more positively charged Co and more negatively charged P, which can promote the adsorption and activation of water molecules and produce large quantities of M(•OH). Meanwhile, the experimental results show that the iron-modulated Fe0.53Co0.47P nanosheet arrays exhibit higher removal efficiency of tetracycline than the boron-doped diamond and Pt anode at low current intensity. Based on experimental results and density functional theory + U calculations (DFT + U), it is found that Fe0.53Co0.47P has lower barrier (0.45 eV) to form the sorbed hydroxyl radicals (M(•OH)) and higher overpotential to produce O2 than its counterparts, suggesting that Fe0.53Co0.47P can produce more M(•OH) instead of O2. The above results highlighted the feasibility of these base metal phosphides for electrooxidation for advanced water purification.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Cobalto , Electrones , Oxidación-Reducción
10.
Environ Sci Technol ; 50(19): 10570-10579, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27608070

RESUMEN

Charging capacitive deionization (CDI) at constant voltage (CV) produces an effluent stream in which ion concentrations vary with time. Compared to CV, charging CDI at constant current (CC) has several advantages, particularly a stable and adjustable effluent ion concentration. In this work, the feasibility of removing fluoride from brackish groundwaters by single-pass constant-current (SPCC) CDI in both zero-volt and reverse-current desorption modes was investigated and a model developed to describe the selective electrosorption of fluoride and chloride. It was found that chloride is preferentially removed from the bulk solution during charging. Both experimental and theoretical results are presented showing effects of operating parameters, including adsorption/desorption current, pump flow rate and fluoride/chloride feed concentrations, on the effluent fluoride concentration, average fluoride adsorption rate and water recovery. Effects of design parameters are also discussed using the validated model. Finally, we describe a possible CDI assembly in which, under appropriate conditions, fluoride water quality targets can be met. The model developed here adequately describes the experimental results obtained and shows how change in the selected system design and operating conditions may impact treated water quality.


Asunto(s)
Fluoruros , Purificación del Agua , Adsorción , Electrodos , Agua Subterránea
11.
Environ Sci Technol ; 50(24): 13495-13501, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993056

RESUMEN

An innovative flow electrode comprising redox-active quinones to enhance the effectiveness of water desalination using flow-electrode capacitive deionization (FCDI) is described in this study. The results show that, in addition to carbon particle contact, the presence of the aqueous hydroquinone (H2Q)/benzoquinone (Q) couple in a flowing suspension of carbon particles enhances charge transfer significantly as a result of reversible redox reactions of H2Q/Q. Ion migration through the micropores of the flow electrodes was facilitated in particular with the desalination rate significantly enhanced. The cycling behavior of the quinoid mediators in the anode flow electrode demonstrated a relatively high stability at the low pH induced, suggesting that the mediator would be suitable for long-term operation.


Asunto(s)
Cloruro de Sodio , Purificación del Agua , Carbono , Electrodos , Oxidación-Reducción
12.
Sci Total Environ ; 943: 173674, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823701

RESUMEN

This paper investigated the operational characteristics and self-regulation mechanism of the partial denitrification/anammox (PD/A) granular system under the stress of oxytetracycline (OTC), an emerging pollutant that accumulates in municipal wastewater treatment plants through various pathways, posing significant challenges for its future promotion in engineering applications. The results indicated that OTC concentrations below 100 mg/L intensified its short-term inhibition on the PD/A granular sludge system, decreasing functional bacterial activity, while between 150 and 300 mg/L, PD's NO3--N to NO2--N conversion ability diminished, and Anammox activity was significantly suppressed. Under long-term high OTC stress (20-30 mg/L), nitrogen removal suffered, and batch tests revealed significant inhibition of PD's NO3--N to NO2--N conversion, dropping from 73.77 % to 50.17 %. Anammox bacteria activity sharply declined from 1.81 to 0.39 mg N/gVSS/h under OTC stress. Extracellular polymeric substances (EPS) content rose from 185.39 to 210.86 mg/gVSS, indicating PD/A sludge's self-protection mechanism. However, EPS content fell due to cell lysis at high OTC (30 mg/L). The decreasing relative abundance of Candidatus_Brocadia (2.32 % to 0.93 %) and Thaure (12.63 % to 7.82 %) was a key factor in the gradual deterioration of denitrification performance. This study was expected to provide guidance for the PD/A process to cope with the interference of antibiotics and other emerging pollutants (short-term shock and long-term stress).


Asunto(s)
Desnitrificación , Oxitetraciclina , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Antibacterianos , Reactores Biológicos , Aguas Residuales/química
13.
Bioresour Technol ; 402: 130828, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734260

RESUMEN

This study investigated the influence of yeast extract addition, carbon source, and photoperiod on the growth dynamics of Auxenochlorella pyrenoidosa FACHB-5. Employing response surface methodology, the culture strategy was optimized, resulting in the following optimal conditions: yeast extract addition at 0.75 g L-1, glucose concentration of 0.83 g L-1, and a photoperiod set at Light: Dark = 18 h: 6 h. Under these conditions, the biomass reached 1.76 g L-1 with a protein content of 750.00 g L-1, containing 40 % of essential amino acids, representing a 1.52-fold increase. Proteomic analysis revealed that the targeted cultivation strategy up-regulated genes involved in microalgal protein synthesis. The combined effect of yeast extract and glucose enhanced both the glutamine synthetase-glutamate synthetase mechanism and the free amino acid content.


Asunto(s)
Biomasa , Aminoácidos/metabolismo , Proteómica/métodos , Glutamato-Amoníaco Ligasa/metabolismo , Fotoperiodo , Glucosa/metabolismo , Microalgas/metabolismo , Proteínas Algáceas/metabolismo , Chlorophyta/metabolismo
14.
J Hazard Mater ; 471: 134314, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640668

RESUMEN

Inorganic coagulants could effectively precipitate algae cells but might increase the potential risks of cell damage and coagulant residue. This study was conducted to critically investigate the suitability of polyaluminum (PAC), FeCl3 and TiCl4 for algae-laden water treatment in terms of the trade-off between algal substance removal, cell viability, and coagulant residue. The results showed that an appropriate increase in coagulant dosage contributed to better coagulation performance but severe cell damage and a higher risk of intracellular organic matter (IOM) release. TiCl4 was the most destructive, resulting in 60.85% of the algal cells presenting membrane damage after coagulation. Intense hydrolysis reaction of Ti salts was favorable for the formation of larger and more elongated, dendritic structured flocs than Al and Fe coagulants. TiCl4 exhibited the lowest residue level and remained in the effluents mainly in colloidal form. The study also identified charge neutralization, chemisorption, enmeshment, and complexation as the dominant mechanisms for algae water coagulation by metal coagulants. Overall, this study provides the trade-off analyses between maximizing algae substance removal and minimizing potential damage to cell integrity and is practically valuable to develop the most suitable and feasible technique for algae-laden water treatment.


Asunto(s)
Hidróxido de Aluminio , Supervivencia Celular , Compuestos Férricos , Floculación , Titanio , Purificación del Agua , Purificación del Agua/métodos , Hidróxido de Aluminio/química , Supervivencia Celular/efectos de los fármacos , Floculación/efectos de los fármacos , Compuestos Férricos/química , Titanio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Cloruros/química
15.
Sci Total Environ ; 952: 175941, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218086

RESUMEN

When biological nitrogen removal (BNR) systems shifted from treating simulated wastewater to real wastewater, a microbial succession occurred, often resulting in a decline in efficacy. Notably, despite their high nitrogen removal efficiency for real wastewater, anammox coupled systems operating without or with minimal carbon sources also exhibited a certain degree of performance reduction. The underlying reasons and metabolic shifts within these systems remained elusive. In this study, the simultaneous autotrophic/heterotrophic anammox system demonstrated remarkable metabolic resilience upon exposure to real municipal wastewater, achieving a nitrogen removal efficiency (NRE) of 82.83 ± 2.29 %. This resilience was attributed to the successful microbial succession and the complementary metabolic functions of heterotrophic microorganisms, which fostered a resilient microbial community. The system's ability to harness multiple electron sources, including NADH oxidation, the TCA cycle, and organics metabolism, allowed it to establish a stable and efficient electron transfer chain, ensuring effective nitrogen removal. Despite the denitrification channel's nitrite supply capability, the analysis of the interspecies correlation network revealed that the synergistic metabolism between AOB and AnAOB was not fully restored, resulting in selective functional bacterial and genetic interactions and the system's PN/A performance declined. Additionally, the enhanced electron affinity of PD increased interconversion of NO3--N and NO2--N, limiting the efficient utilization of electrons and thereby constraining nitrogen removal performance. This study elucidated the metabolic mechanism of nitrogen removal limitations in anammox-based systems treating real municipal wastewater, enhancing our understanding of the metabolic functions and electron transfer within the symbiotic bacterial community.

16.
Bioresour Technol ; 394: 130194, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086466

RESUMEN

Levels of cadmium (Cd) and lead (Pb) correspond to common composition in acid mine wastewater of Hunan Province of China. The removal path of Cd and Pb and the structure of microbial community were investigated by developing constructed wetlands (CWs) with different layer positions of biochar. The biochar as a layer at the bottom of CW (BCW) system exhibited maximum Cd and Pb removal efficiencies of 96.6-98.6% and 97.2-98.9%, respectively. Compared with original soil, BCW increased the relative proportions of Proteobacteria, Firmicutes, Acidobacteriota, Verrucomicrobiota, Desulfobacterota, Armatimonadota, Bacteroidota, Patescibacteria, Basidiomycota (phylum level) and Burkholderia-Caballeronia-Paraburkholderia, Citrifermentans, Chthonomonadales, Cellulomonas, Geothrix, Terracidiphilus, Gallionellaceae, Microbacterium, Vanrija, Apiotrichum, Saitozyma, Fusarium (genus level). The concentrations of Cd and Pb were positively correlated with the abundance of Verrucomicrobiota, Basidiomycota (phylum level), and Methylacidiphilaceae, Meyerozyma, Vanrija (genus level). This study demonstrates that BCW system can improve removal performance toward Cd and Pb, as well as alter microbial community.


Asunto(s)
Burkholderiaceae , Microbiota , Cadmio , Plomo , Humedales , Carbón Orgánico/química , Bacterias , Acidobacteria , Eliminación de Residuos Líquidos
17.
Bioresour Technol ; 393: 130113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013039

RESUMEN

This article investigates the buffering capacity and recovery-enhancing ability of granular activated carbon (GAC) in a starved (influent total nitrogen: 20 mg/L) anaerobic ammonium oxidation (anammox) reactor. The findings revealed that anammox aggregated and sustained basal metabolism with shorter performance recovery lag (6 days) and better nitrogen removal efficiency (84.9 %) due to weak electron-repulsion and abundance redox-active groups on GAC's surface. GAC-supported enhanced extracellular polymeric substance secretion aided anammox in resisting starvation. GAC also facilitated anammox bacterial proliferation and expedited the restoration of anammox microbial community from a starved state to its initial-level. Metabolic function analyses unveiled that GAC improved the expression of genes involved in amino acid metabolism and sugar-nucleotide biosynthesis while promoted microbial cross-feeding, ultimately indicating the superior potential of GAC in stimulating more diverse metabolic networks in nutrient-depleted anammox consortia. This research sheds light on the microbial and metabolic mechanisms underlying GAC-mediated anammox system in low-substrate habitats.


Asunto(s)
Compuestos de Amonio , Microbiota , Carbón Orgánico , Aguas del Alcantarillado/microbiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Anaerobiosis , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Desnitrificación
18.
Bioresour Technol ; 407: 131114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009049

RESUMEN

This research examined the impact of exogenous thermophilic bacteria and ripening agents on greenhouse gas (GHG) emission, enzyme activity, and microbial community during composting. The use of ripening agents alone resulted in a 30.9 % reduction in CO2 emissions, while the use of ripening agents and thermophilic bacteria resulted in a 50.8 % reduction in N2O emissions. Pearson's analysis showed that organic matter and nitrate nitrogen were the key parameters affecting GHG emissions. There was an inverse correlation between CO2 and CH4 releases and methane monooxygenase α subunit and N2O reductase activity (P<0.05). Additionally, N2O emissions were positively related to ß-1, 4-N-acetylglucosaminidase, and ammonia monooxygenase activity (P<0.05). Deinococcota, Chloroflexi, and Bacteroidota are closely related to CO2 and N2O emissions. Overall, adding thermophilic bacteria represents an effective strategy to mitigate GHG emissions during composting.


Asunto(s)
Bacterias , Compostaje , Gases de Efecto Invernadero , Bacterias/metabolismo , Compostaje/métodos , Dióxido de Carbono , Metano/metabolismo , Óxido Nitroso/metabolismo , Microbiología del Suelo , Microbiota/fisiología , Suelo/química
19.
Sci Total Environ ; 951: 175689, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173749

RESUMEN

The lack of electron acceptors in anaerobic sediments leads to endogenous phosphorus release and low removal efficiency of organic pollutants. This study introduced electrodes and iron oxides into sediments to construct electron network transport chains to supplement electron acceptors. The sediment total organic carbon (TOC) removal efficiencies of closed-circuit (CC) and closed-circuit with Fe addition (CC-Fe) were estimated to be 1.4 and 1.7 times of the control. Unlike the fluctuation of phosphorus in the overlying water of the controls, the CC-Fe was stabled at 0.04-0.08 mg/L during the 84-d operation. The phosphorus in interstitial water of CC-Fe was 30 % less than in control, whereas in sediment, the redox sensitive phosphorus was increased by 14 %, indicating phosphorus was preferred to fix into sediments rather than interstitial water. This is important to reduce the risk of endogenous phosphorus returning to the overlying water. Microbial community analysis showed that the multiplication of Fonticella in CC-Fe (20 %) was 1.8-fold of control (11 %) which improved the TOC removal efficiency. While electroactive microorganisms accumulated near the electrode reduced the abundance of Fe-reducing bacteria, such as Desulfitobacterium (2.4 %), leading to better phosphorus fixation. These findings suggest a strategy for the efficient bioremediation of endogenous pollution in water, with broader implications for regulating electron transport paths and element cycles in aquatic environments.

20.
Water Res ; 256: 121624, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669903

RESUMEN

The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiotic reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7 %-20.4 % (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization.


Asunto(s)
Microalgas , Nitrógeno , Nitrógeno/metabolismo , Microalgas/metabolismo , Bacterias/metabolismo , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Proteínas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA