Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(47): e2214513119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375055

RESUMEN

Fungi are central to every terrestrial and many aquatic ecosystems, but the mechanisms underlying fungal tolerance to mercury, a global pollutant, remain unknown. Here, we show that the plant symbiotic fungus Metarhizium robertsii degrades methylmercury and reduces divalent mercury, decreasing mercury accumulation in plants and greatly increasing their growth in contaminated soils. M. robertsii does this by demethylating methylmercury via a methylmercury demethylase (MMD) and using a mercury ion reductase (MIR) to reduce divalent mercury to volatile elemental mercury. M. robertsii can also remove methylmercury and divalent mercury from fresh and sea water even in the absence of added nutrients. Overexpression of MMD and MIR significantly improved the ability of M. robertsii to bioremediate soil and water contaminated with methylmercury and divalent mercury. MIR homologs, and thereby divalent mercury tolerance, are widespread in fungi. In contrast, MMD homologs were patchily distributed among the few plant associates and soil fungi that were also able to demethylate methylmercury. Phylogenetic analysis suggests that fungi could have acquired methylmercury demethylase genes from bacteria via two independent horizontal gene transfer events. Heterologous expression of MMD in fungi that lack MMD homologs enabled them to demethylate methylmercury. Our work reveals the mechanisms underlying mercury tolerance in fungi, and may provide a cheap and environmentally friendly means of cleaning up mercury pollution.


Asunto(s)
Mercurio , Metarhizium , Compuestos de Metilmercurio , Biodegradación Ambiental , Agua , Mercurio/toxicidad , Filogenia , Ecosistema , Metarhizium/genética , Suelo
2.
Fungal Genet Biol ; 172: 103886, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485049

RESUMEN

Plant-derived sugars and lipids are key nutritional sources for plant associated fungi. However, the relationship between utilization of host-derived sugars and lipids during development of the symbiotic association remains unknown. Here we show that the fungus Metarhizium robertsii also needs plant-derived lipids to develop symbiotic relationship with plants. The fatty acid binding proteins FABP1 and FABP2 are important for utilization of plant-derived lipids as the deletion of Fabp1 and Fabp2 significantly reduced the ability of M. robertsii to colonize rhizoplane and rhizosphere of maize and Arabidopsis thaliana. Deleting Fabp1 and Fabp2 increased sugar utilization by upregulating six sugar transporters, and this explains why deleting the monosaccharide transporter gene Mst1, which plays an important role in utilization of plant-derived sugars, had no impact on the ability of the double-gene deletion mutant ΔFabp1::ΔFabp2 to colonize plant roots. FABP1 and FABP2 were also found in other plant-associated Metarhizium species, and they were highly expressed in the medium using the tomato root exudate as the sole carbon and nitrogen source, suggesting that they could be also important for these species to develop symbiotic relationship with plants. In conclusion, we discovered that utilization of plant-derived sugars and lipids are coupled during colonization of rhizoplane and rhizosphere by M. robertsii.


Asunto(s)
Arabidopsis , Metarhizium , Raíces de Plantas , Rizosfera , Zea mays , Metarhizium/genética , Metarhizium/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Raíces de Plantas/microbiología , Zea mays/microbiología , Simbiosis/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Azúcares/metabolismo
3.
Front Fungal Biol ; 3: 911366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746179

RESUMEN

Fungi rely on major signaling pathways such as the MAPK (Mitogen-Activated Protein Kinase) signaling pathways to regulate their responses to fluctuating environmental conditions, which is vital for fungi to persist in the environment. The cosmopolitan Metarhizium fungi have multiple lifestyles and remarkable stress tolerance. Some species, especially M. robertsii, are emerging models for investigating the mechanisms underlying ecological adaptation in fungi. Here we review recently identified new downstream branches of the MAPK cascades in M. robertsii, which controls asexual production (conidiation), insect infection and selection of carbon and nitrogen nutrients. The Myb transcription factor RNS1 appears to be a central regulator that channels information from the Fus3- and Slt2-MAPK cascade to activate insect infection and conidiation, respectively. Another hub regulator is the transcription factor AFTF1 that transduces signals from the Fus3-MAPK and the membrane protein Mr-OPY2 for optimal formation of the infection structures on the host cuticle. Homologs of these newly identified regulators are found in other Metarhizium species and many non-Metarhizium fungi, indicating that these new downstream signaling branches of the MAPK cascades could be widespread.

4.
J Fungi (Basel) ; 8(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35049966

RESUMEN

Ascomycete fungi usually produce small hydrophobic asexual conidia that are easily dispersed and essential for long-term survival under a variety of environmental conditions. Several upstream signaling regulators have been documented to control conidiation via regulation of the central regulatory pathway that contains the transcription factors BrlA, AbaA and WetA. Here, we showed that the Slt2-MAPK signaling pathway and the transcription factor RNS1 constitute a novel upstream signaling cascade that activates the central regulatory pathway for conidiation in the Ascomycetes fungus M. robertsii. The BrlA gene has two overlapping transcripts BrlAα and BrlAß; they have the same major ORF, but the 5' UTR of BrlAß is 835 bp longer than the one of BrlAα. During conidiation, Slt2 phosphorylates the serine residue at the position 306 in RNS1, which self-induces. RNS1 binds to the BM2 motif in the promoter of the BrlA gene and induces the expression of the transcript BlrAα, which in turn activates the expression of the genes AbaA and WetA. In conclusion, the Slt2/RNS1 cascade represents a novel upstream signaling pathway that initiates conidiation via direct activation of the central regulatory pathway. This work provides significant mechanistic insights into the production of asexual conidia in an Ascomycete fungus.

5.
Front Microbiol ; 12: 721426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745029

RESUMEN

Most isolated strains of Staphylococcus sciuri contain mecA1, the evolutionary origin of mecA, but are sensitive to ß-lactams (OS-MRSS, oxacillin-susceptible mecA1-positive S. sciuri). In order to improve the efficacy of antibiotic treatment, it is important to clarify whether the resistance of OS-MRSS to ß-lactams is an inducible phenotype. In this study, three OS-MRSS strains with oxacillin MIC = 1 µg/ml were isolated from 29 retail pork samples. The resistance of OS-MRSS to ß-lactams (MIC > 256 µg/ml) was found to be induced by oxacillin, and the induced resistance was observed to remain stable within a certain period of time. Interestingly, the induced ß-lactam resistance was not caused by mecA1, heterogeneous resistance, or any genetic mutation, but mainly due to increased wall teichoic acid (WTA) synthesis that thickened the cell wall. The induced strains also showed slower growth rate, as well as decreased adhesion ability and biofilm thickness. These phenotypes were found to be achieved through altered gene expression in associated pathways, such as the citrate cycle and pentose phosphate pathway. The results challenge the traditional antibiotic sensitivity test. In the presence of ß-lactam antibiotics, OS-MRSS that was initially sensitive to ß-lactams was observed to gradually develop ß-lactam resistance in several days. This often-neglected phenomenon in antibiotic sensitivity tests requires further research attention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA