Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38719449

RESUMEN

Decreased neuronal specificity of the brain in response to cognitive demands (i.e., neural dedifferentiation) has been implicated in age-related cognitive decline. Investigations into functional connectivity analogs of these processes have focused primarily on measuring segregation of nonoverlapping networks at rest. Here, we used an edge-centric network approach to derive entropy, a measure of specialization, from spatially overlapping communities during cognitive task fMRI. Using Human Connectome Project Lifespan data (713 participants, 36-100 years old, 55.7% female), we characterized a pattern of nodal despecialization differentially affecting the medial temporal lobe and limbic, visual, and subcortical systems. At the whole-brain level, global entropy moderated declines in fluid cognition across the lifespan and uniquely covaried with age when controlling for the network segregation metric modularity. Importantly, relationships between both metrics (entropy and modularity) and fluid cognition were age dependent, although entropy's relationship with cognition was specific to older adults. These results suggest entropy is a potentially important metric for examining how neurological processes in aging affect functional specialization at the nodal, network, and whole-brain level.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Conectoma , Entropía , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Adulto , Envejecimiento/fisiología , Envejecimiento/psicología , Cognición/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen
2.
Neuroimage ; 244: 118607, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607022

RESUMEN

The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several strategies in which the "out-of-the-box" version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches for detecting "space-independent" modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications.


Asunto(s)
Mapeo Encefálico/métodos , Redes Neurales de la Computación , Algoritmos , Encéfalo/fisiología , Cognición , Humanos , Neurociencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA