Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 14(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731325

RESUMEN

Two experiments were conducted to investigate the effects of isobutyramide (IBA) and slow-release urea (SRU) as substitutes for soybean meal (SBM) in the finishing diet of beef cattle. The completely randomized design in vitro experiment with five treatments, i.e., control, 0.9% SRU group, 0.6% SRU + 0.3% IBA group (SRU-I), 0.3% SRU + 0.6% IBA group (IBA-S), 0.9% IBA group was conducted. The results showed that the IBA-S and IBA increased (p ≤ 0.05) substrate disappearance of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), total gas, and total volatile fatty acids (TVFA). The SRU group had the highest (p < 0.01) crude protein disappearance and ammonia nitrogen concentration, but the IBA contrarily decreased (p < 0.01) them compared with the control. Inclusion of IBA increased isobutyrate concentrations (p = 0.01) with the highest value for the IBA group. Then, an 84-day replicate 4 × 4 Latin square design with 8 Angus steers and four treatments, i.e., control, SRU, SRU-I, IBA-S was performed. The results showed that the treatments did not affect DM intake (p > 0.05) but tended (p = 0.09) to increase average daily gain. The inclusion of IBA increased (p < 0.05) the apparent digestibility of DM, organic matter, NDF, ADF, TVFA, and microbial crude protein with the highest values for the IBA-S group. The IBA-contained groups also increased (p ≤ 0.01) isobutyrate concentration, activities of carboxymethyl cellulase and xylanase, and the relative abundance of Butyrivibrio fibrisolvens with the highest values for the IBA-S group. The SRU had no effect on animal growth and nutrient apparent digestibility. In conclusion, IBA was developed as a new substitute for SBM in the finishing diet of beef cattle, and the optimal strategy was the isonitrogenous substitution of SBM with 0.3% SRU and 0.6% IBA of the diet.

2.
J. physiol. biochem ; 78(3): 667-678, ago. 2022.
Artículo en Inglés | IBECS (España) | ID: ibc-216160

RESUMEN

Skeletal muscle stem cells (SMSCs) are vital to the growth, maintenance, and repair of the muscles; emerging evidence has indicated that Toll-like receptor 4 (TLR4) can potentially regulate muscle regeneration. In present study, in vitro and in vivo experiments were performed to explore the correlation of TLR4 with leucine-rich glioma-inactivated 1 (LGI1) as well as their effects on the proliferation and osteogenesis potential of SMSCs. In order to examine the regulatory mechanisms of TLR4 and LGI1 in SMSCs, the obtained cells were treated with lipopolysaccharide (LPS, used as an activator of TLR4) of different concentration at different time points as well as the siRNA against LGI1. Subsequently, a series of detection was undertaken in order to measure the proliferation and differentiation potential of SMSCs, which involved detection of the related factors, cell activity, and the sphere-forming capability. Following LPS treatment, the increased TLR4 expression and reduced LGI1 expression were observed. Consequently, we also discovered that Erk signaling pathway was inactivated and cell proliferation and osteogenesis capabilities declined, presented by the downregulation of related factors such as cyclin B1 and runt-related transcription factor 2. Moreover, the cell activity and sphere-formation performance of SMSCs were also declined. These results were also validated in rats with cecal ligation and perforation-induced rat models with sepsis. In conclusion, the present study reveals a regulatory mechanism in SMSCs whereby LGI1 expression is reduced by TLR4, thus impeding cell proliferation and osteogenesis, highlighting TLR4 as a potential therapeutic target against many diseases related to SMSCs. (AU)


Asunto(s)
Humanos , Glioma , Osteogénesis , Músculo Esquelético , Proliferación Celular , Células Cultivadas , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA