Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 611(7935): 365-373, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323783

RESUMEN

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Asunto(s)
Movimiento Celular , Líquido Extracelular , Metástasis de la Neoplasia , Neoplasias , Viscosidad , Animales , Embrión de Pollo , Ratones , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Canales Catiónicos TRPV , Pez Cebra/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Vía de Señalización Hippo , Esferoides Celulares/patología , Complejo 2-3 Proteico Relacionado con la Actina , Proteína de Unión al GTP rhoA , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pulmón/patología
2.
J Cell Sci ; 131(4)2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361533

RESUMEN

Eukaryotic cells are sensitive to mechanical forces they experience from the environment. The process of mechanosensation is complex, and involves elements such as the cytoskeleton and active contraction from myosin motors. Ultimately, mechanosensation is connected to changes in gene expression in the cell, known as mechanotransduction. While the involvement of the cytoskeleton in mechanosensation is known, the processes upstream of cytoskeletal changes are unclear. In this paper, by using a microfluidic device that mechanically compresses live cells, we demonstrate that Ca2+ currents and membrane tension-sensitive ion channels directly signal to the Rho GTPase and myosin contraction. In response to membrane tension changes, cells actively regulate cortical myosin contraction to balance external forces. The process is captured by a mechanochemical model where membrane tension, myosin contraction and the osmotic pressure difference between the cytoplasm and extracellular environment are connected by mechanical force balance. Finally, to complete the picture of mechanotransduction, we find that the tension-sensitive transcription factor YAP family of proteins translocate from the nucleus to the cytoplasm in response to mechanical compression.


Asunto(s)
Citoesqueleto/química , Fenómenos Mecánicos , Mecanotransducción Celular/genética , Miosinas/química , Señalización del Calcio/genética , Proteínas de Ciclo Celular , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Citoplasma/química , Citoplasma/genética , Citoesqueleto/genética , Humanos , Dispositivos Laboratorio en un Chip , Contracción Muscular/genética , Miosinas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Presión Osmótica , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética
3.
Molecules ; 24(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841558

RESUMEN

A indentation-based device to measure tissue mechanical property was designed and built using over-the-counter and 3D-printed parts. The device costs less than 100 USD and is capable of measuring samples of various geometry because of its modular design. The device is light-weight, thus portable, for measurements that can be performed at different sites. It was demonstrated that the measurement results obtained using our device are comparable to previous observations. The elastic shear modulus of the human skin was in the range of 2 kPa to 8 kPa, and skin tissues in old mice were stiffer than young mice. Mechanical properties of the skin tissues belonging to the same test subject varied depending on the location of the measurement. In conclusion, because our device is economic, modular, portable, and robust, it is suitable to serve as a standard measurement platform for studying tissue mechanics.


Asunto(s)
Módulo de Elasticidad , Elasticidad , Fenómenos Mecánicos , Fenómenos Fisiológicos de la Piel , Viscosidad , Animales , Diseño de Equipo , Femenino , Humanos , Estudios Longitudinales , Masculino , Ratones , Modelos Teóricos , Estrés Mecánico
4.
Rep Prog Phys ; 80(3): 036601, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28129208

RESUMEN

Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.


Asunto(s)
Fenómenos Biomecánicos , Fenómenos Fisiológicos Celulares , Animales , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Modelos Biológicos , Agua/metabolismo
5.
Biophys J ; 109(8): 1541-50, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488645

RESUMEN

Active contractile forces exerted by eukaryotic cells play significant roles during embryonic development, tissue formation, and cell motility. At the molecular level, small GTPases in signaling pathways can regulate active cell contraction. Here, starting with mechanical force balance at the cell cortex, and the recent discovery that tension-sensitive membrane channels can catalyze the conversion of the inactive form of Rho to the active form, we show mathematically that this active regulation of cellular contractility together with osmotic regulation can robustly control the cell size and membrane tension against external mechanical or osmotic shocks. We find that the magnitude of active contraction depends on the rate of mechanical pulling, but the cell tension can recover. The model also predicts that the cell exerts stronger contractile forces against a stiffer external environment, and therefore exhibits features of mechanosensation. These results suggest that a simple system for maintaining homeostatic values of cell volume and membrane tension could explain cell tension response and mechanosensation in different environments.


Asunto(s)
Tamaño de la Célula , Modelos Biológicos , Estrés Fisiológico/fisiología , Fenómenos Biomecánicos , Membrana Celular/fisiología , Elasticidad , Homeostasis/fisiología , Miosinas/metabolismo , Ósmosis/fisiología
6.
Commun Biol ; 6(1): 43, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639551

RESUMEN

Tissue stem cell niches are regulated by their mechanical environment, notably the extracellular matrix (ECM). Skeletal muscles consist of bundled myofibers for force transmission. Within this macroscopic architecture, quiescent Pax7-expressing (Pax7+) muscle stem cells (MuSCs) are compressed between ECM basally and myofiber apically. Muscle injury causes MuSCs to lose apical compression from the myofiber and re-enter the cell cycle for regeneration. While ECM elasticities have been shown to affect MuSC's renewal, the significance of apical compression remains unknown. To investigate the role of apical compression, we simulate the MuSCs' in vivo mechanical environment by applying physical compression to MuSCs' apical surface. We demonstrate that compression drives activated MuSCs back to a quiescent stem cell state, regardless of basal elasticities and chemistries. By mathematical modeling and cell tension manipulation, we conclude that low overall tension combined with high axial tension generated by compression leads to MuSCs' stemness and quiescence. Unexpectedly, we discovered that apical compression results in up-regulation of Notch downstream genes, accompanied by the increased levels of nuclear Notch1&3 in a Delta ligand (Dll) and ADAM10/17 independent manner. Our results fill a knowledge gap on the role of apical compression for MuSC fate and have implications to stem cells in other tissues.


Asunto(s)
Células Satélite del Músculo Esquelético , Nicho de Células Madre , Músculo Esquelético/metabolismo , Células Madre , Células Satélite del Músculo Esquelético/metabolismo
7.
Adv Sci (Weinh) ; 9(17): e2104649, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35434926

RESUMEN

Multicellular organization with precise spatial definition is essential to various biological processes, including morphogenesis, development, and healing in vascular and other tissues. Gradients and patterns of chemoattractants are well-described guides of multicellular organization, but the influences of 3D geometry of soft hydrogels are less well defined. Here, the discovery of a new mode of endothelial cell self-organization guided by combinatorial effects of stiffness and geometry, independent of protein or chemical patterning, is described. Endothelial cells in 2 kPa microwells are found to be ≈30 times more likely to migrate to the edge to organize in ring-like patterns than in stiff 35 kPa microwells. This organization is independent of curvature and significantly more pronounced in 2 kPa microwells with aspect ratio (perimeter/depth) < 25. Physical factors of cells and substrates that drive this behavior are systematically investigated and a mathematical model that explains the organization by balancing the dynamic interaction between tangential cytoskeletal tension, cell-cell, and cell-substrate adhesion is presented. These findings demonstrate the importance of combinatorial effects of geometry and stiffness in complex cellular organization that can be leveraged to facilitate the engineering of bionics and integrated model organoid systems with customized nutrient vascular networks.


Asunto(s)
Células Endoteliales , Hidrogeles , Adhesión Celular , Células Endoteliales/metabolismo , Hidrogeles/farmacología
8.
J Cell Biol ; 218(10): 3472-3488, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31481532

RESUMEN

How mammalian cells regulate their physical size is currently poorly understood, in part due to the difficulty in accurately quantifying cell volume in a high-throughput manner. Here, using the fluorescence exclusion method, we demonstrate that the mechanosensitive transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are regulators of single-cell volume. The role of YAP/TAZ in volume regulation must go beyond its influence on total cell cycle duration or cell shape to explain the observed changes in volume. Moreover, for our experimental conditions, volume regulation by YAP/TAZ is independent of mTOR. Instead, we find that YAP/TAZ directly impacts the cell division volume, and YAP is involved in regulating intracellular cytoplasmic pressure. Based on the idea that YAP/TAZ is a mechanosensor, we find that inhibiting myosin assembly and cell tension slows cell cycle progression from G1 to S. These results suggest that YAP/TAZ may be modulating cell volume in combination with cytoskeletal tension during cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Tamaño de la Célula , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Células Cultivadas , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
9.
Mol Biol Cell ; 29(21): 0, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30113884

RESUMEN

Animal cells use an unknown mechanism to control their growth and physical size. Here, using the fluorescence exclusion method, we measure cell volume for adherent cells on substrates of varying stiffness. We discover that the cell volume has a complex dependence on substrate stiffness and is positively correlated with the size of the cell adhesion to the substrate. From a mechanical force-balance condition that determines the geometry of the cell surface, we find that the observed cell volume variation can be predicted quantitatively from the distribution of active myosin through the cell cortex. To connect cell mechanical tension with cell size homeostasis, we quantified the nuclear localization of YAP/TAZ, a transcription factor involved in cell growth and proliferation. We find that the level of nuclear YAP/TAZ is positively correlated with the average cell volume. Moreover, the level of nuclear YAP/TAZ is also connected to cell tension, as measured by the amount of phosphorylated myosin. Cells with greater apical tension tend to have higher levels of nuclear YAP/TAZ and a larger cell volume. These results point to a size-sensing mechanism based on mechanical tension: the cell tension increases as the cell grows, and increasing tension feeds back biochemically to growth and proliferation control.


Asunto(s)
Tamaño de la Célula , Células/citología , Células 3T3 , Animales , Fenómenos Biomecánicos , Adhesión Celular , Núcleo Celular/metabolismo , Proliferación Celular , Forma de la Célula , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA